Analysis of environmental risk factors for pulmonary embolism: A case-crossover study (2001–2013)

Published:March 21, 2016DOI:https://doi.org/10.1016/j.ejim.2016.03.001

      Highlights

      • The relationship between environmental factors and pulmonary embolism (PE) is little known.
      • PE epidemiology is adversely influenced by colder climatological factors.
      • PE epidemiology is also adversely influenced by higher concentrations of ambient air pollution.

      Abstract

      Background

      The relationship between environmental factors and pulmonary embolism (PE) has received little attention. The aim of this study was to estimate the influence of climatological factors and air pollution levels on PE in Spain from 2001 to 2013.

      Methods

      We carried out a retrospective study. Data were collected from the Minimum Basic Data Set (MBDS) and the State Meteorological Agency (AEMET) of Spain. A case-crossover analysis was applied to identify environmental risk factors related to hospitalizations and deaths. For each patient, climatic and pollutant factors were assigned using data from the meteorological station closest to his/her postal code.

      Results

      A seasonal effect for PE hospital admission was observed, with more frequent admissions noted during Spain's colder seasons with peaks in autumn and winter. Lower temperatures as well as higher concentrations of NO2 and O3 at the time of admission (when 2 weeks and 3 weeks respectively were used as controls) were significant risk factors for hospital admissions with PE.

      Conclusions

      Pulmonary embolism epidemiology was adversely influenced by colder climatological factors (absolute temperature, and seasonality) and higher concentrations of ambient air pollution (NO2, O3).

      Keywords

      To read this article in full you will need to make a payment

      References

        • Brook R.D.
        • Rajagopalan S.
        • Pope III, C.A.
        • Brook J.R.
        • Bhatnagar A.
        • Diez-Roux A.V.
        • et al.
        Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association.
        Circulation. 2010; 121: 2331-2378
        • Sun Q.
        • Hong X.
        • Wold L.E.
        Cardiovascular effects of ambient particulate air pollution exposure.
        Circulation. 2010; 121: 2755-2765
        • Simkhovich B.Z.
        • Kleinman M.T.
        • Kloner R.A.
        Air pollution and cardiovascular injury epidemiology, toxicology, and mechanisms.
        J Am Coll Cardiol. 2008; 52: 719-726
        • Dockery D.W.
        • Pope III, C.A.
        • Xu X.
        • Spengler J.D.
        • Ware J.H.
        • Fay M.E.
        • et al.
        An association between air pollution and mortality in six U.S. cities.
        N Engl J Med. 1993; 329: 1753-1759
        • Pope III, C.A.
        • Burnett R.T.
        • Thun M.J.
        • Calle E.E.
        • Krewski D.
        • Ito K.
        • et al.
        Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution.
        JAMA. 2002; 287: 1132-1141
        • Miller K.A.
        • Siscovick D.S.
        • Sheppard L.
        • Shepherd K.
        • Sullivan J.H.
        • Anderson G.L.
        • et al.
        Long-term exposure to air pollution and incidence of cardiovascular events in women.
        N Engl J Med. 2007; 356: 447-458
        • Hoek G.
        • Krishnan R.M.
        • Beelen R.
        • Peters A.
        • Ostro B.
        • Brunekreef B.
        • et al.
        Long-term air pollution exposure and cardio- respiratory mortality: a review.
        Environ Health. 2013; 12: 43
        • Utell M.J.
        • Frampton M.W.
        • Zareba W.
        • Devlin R.B.
        • Cascio W.E.
        Cardiovascular effects associated with air pollution: potential mechanisms and methods of testing.
        Inhal Toxicol. 2002; 14: 1231-1247
        • Baccarelli A.
        • Zanobetti A.
        • Martinelli I.
        • Grillo P.
        • Hou L.
        • Giacomini S.
        • et al.
        Effects of exposure to air pollution on blood coagulation.
        J Thromb Haemost. 2007; 5: 252-260
        • Nemmar A.
        • Hoylaerts M.F.
        • Nemery B.
        Effects of particulate air pollution on hemostasis.
        Clin Occup Environ Med. 2006; 5: 865-881
        • Rückerl R.
        • Ibald-Mulli A.
        • Koenig W.
        • Schneider A.
        • Woelke G.
        • Cyrys J.
        • et al.
        Air pollution and markers of inflammation and coagulation in patients with coronary heart disease.
        Am J Respir Crit Care Med. 2006; 173: 432-441
        • Spiezia L.
        • Campello E.
        • Bon M.
        • Maggiolo S.
        • Pelizzaro E.
        • Simioni P.
        Short-term exposure to high levels of air pollution as a risk factor for acute isolated pulmonary embolism.
        Thromb Res. 2014; 134: 259-263
        • Baccarelli A.
        • Martinelli I.
        • Zanobetti A.
        • Grillo P.
        • Hou L.F.
        • Bertazzi P.A.
        • et al.
        Exposure to particulate air pollution and risk of deep vein thrombosis.
        Arch Intern Med. 2008; 168: 920-927
        • Dales R.E.
        • Cakmak S.
        • Vidal C.B.
        Air pollution and hospitalization for venous thromboembolic disease in Chile.
        J Thromb Haemost. 2010; 8: 669-674
        • Shih R.A.
        • Griffin B.A.
        • Salkowski N.
        • Jewell A.
        • Eibner C.
        • Bird C.E.
        • et al.
        Ambient particulate matter air pollution and venous thromboembolism in the Women's Health Initiative Hormone Therapy trials.
        Environ Health Perspect. 2011; 119: 326-331
        • D'Amato G.
        • Holgate S.T.
        • Pawankar R.
        • Ledford D.K.
        • Cecchi L.
        • Al-Ahmad M.
        • et al.
        Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization.
        World Allergy Organ J. 2015; 8: 25
        • Goerre S.
        • Egli C.
        • Gerber S.
        • Defila C.
        • Minder C.
        • Richner H.
        • et al.
        Impact of weather and climate on the incidence of acute coronary syndromes.
        Int J Cardiol. 2007; 118: 36-40
        • Abrignani M.G.
        • Corrao S.
        • Biondo G.B.
        • Renda N.
        • Braschi A.
        • Novo G.
        • et al.
        Influence of climatic variables on acute myocardial infarction hospital admissions.
        Int J Cardiol. 2009; 137: 123-129
        • Abrignani M.G.
        • Corrao S.
        • Biondo G.B.
        • Lombardo R.M.
        • Di Girolamo P.
        • Braschi A.
        • et al.
        Effects of ambient temperature, humidity, and other meteorological variables on hospital admissions for angina pectoris.
        Eur J Prev Cardiol. 2012; 19: 342-348
        • Scott J.A.
        • Palmer E.L.
        • Fischman A.J.
        • Strauss H.W.
        Meteorologic influences on the frequency of pulmonary embolism.
        Invest Radiol. 1992; 27: 583-586
        • Clauss R.
        • Mayes J.
        • Hilton P.
        • Lawrenson R.
        The influence of weather and environment on pulmonary embolism: pollutants and fossil fuels.
        Med Hypotheses. 2005; 64: 1198-1201
        • Meral M.
        • Mirici A.
        • Aslan S.
        • Akgun M.
        • Kaynar H.
        • Saglam L.
        • et al.
        Barometric pressure and the incidence of pulmonary embolism.
        Chest. 2005; 128: 2190-2194
        • Oztuna F.
        • Ozsu S.
        • Topbaş M.
        • Bülbül Y.
        • Koşucu P.
        • Ozlü T.
        Meteorological parameters and seasonal variations in pulmonary thromboembolism.
        Am J Emerg Med. 2008; 26: 1035-1041
        • Subdirección General de Desarrollo
        • Instituto Nacional de Salud
        • Ministerio de Sanidad y Consumo
        Conjunto Mínimo Básico de Datos.
        Hospitales de Insalud, 2001 ([http://www.ingesa.msc.es/estadEstudios/documPublica/CMBD-2001.htm])
        • Quan H.
        • Sundararajan V.
        • Halfon P.
        • Fong A.
        • Burnand B.
        • Luthi J.C.
        • et al.
        Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data.
        Med Care. 2005; 43: 1130-1139
      1. Alkaline Software Inc. The web's free 2014 medical coding reference. 2010 ICD-9-CM diagnosis codes. In

        • Rue H.
        • Martino S.
        • Lindgren F.
        • Simpson D.
        • Riebler A.
        INLA: functions which allow to perform full Bayesian analysis of latent Gaussian models using integrated nested Laplace approximation.
        in: R package version 0.0-1389624686. 2014
        • Carracedo-Martinez E.
        • Taracido M.
        • Tobias A.
        • Saez M.
        • Figueiras A.
        Case-crossover analysis of air pollution health effects: a systematic review of methodology and application.
        Environ Health Perspect. 2010; 118: 1173-1182
        • Maclure M.
        The case-crossover design: a method for studying transient effects on the risk of acute events.
        Am J Epidemiol. 1991; 133: 144-153
        • Perz J.F.
        • Armstrong G.L.
        • Farrington L.A.
        • Hutin Y.J.
        • Bell B.P.
        The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide.
        J Hepatol. 2006; 45: 529-538
        • Medina-Ramon M.
        • Zanobetti A.
        • Schwartz J.
        The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study.
        Am J Epidemiol. 2006; 163: 579-588
        • Zanobetti A.
        • Schwartz J.
        Air pollution and emergency admissions in Boston, MA.
        J Epidemiol Community Health. 2006; 60: 890-895
        • Djawe K.
        • Levin L.
        • Swartzman A.
        • Fong S.
        • Roth B.
        • Subramanian A.
        • et al.
        Environmental risk factors for pneumocystis pneumonia hospitalizations in HIV patients.
        Clin Infect Dis. 2013; 56: 74-81
        • Jaakkola J.J.
        Case-crossover design in air pollution epidemiology.
        Eur Respir J. 2003; 40 ([Suppl.]): 81s-85s
        • R Development Core Team
        A language and environment for statistical computing (available from: http://www.R-project.org/).
        R Foundation for Statistical Computing, Vienna, Austria2014
        • Gallerani M.
        • Boari B.
        • Smolensky M.H.
        • Salmi R.
        • Fabbri D.
        • Contato E.
        • et al.
        Seasonal variation in occurrence of pulmonary embolism: analysis of the database of the Emilia-Romagna region, Italy.
        Chronobiol Int. 2007; 24: 143-160
        • Dentali F.
        • Ageno W.
        • Rancan E.
        • Donati A.V.
        • Galli L.
        • Squizzato A.
        • et al.
        Seasonal and monthly variability in the incidence of venous thromboembolism. A systematic review and a meta-analysis of the literature.
        Thromb Haemost. 2011; 106: 439-447
        • Guijarro R.
        • Trujillo-Santos J.
        • Bernal-Lopez M.R.
        • de Miguel-Díez J.
        • Villalobos A.
        • Salazar C.
        • et al.
        Trend and seasonality in hospitalizations for pulmonary embolism: a time-series analysis.
        J Thromb Haemost. 2015; 13: 23-30
        • Bull G.M.
        • Brozovic M.
        • Chakrabarti R.
        • Meade T.W.
        • Morton J.
        • North W.R.
        • et al.
        Relationship of air temperature to various chemical, haematological, and haemostatic variables.
        J Clin Pathol. 1979; 32: 16-20
        • Keatinge W.R.
        • Coleshaw S.R.
        • Cotter F.
        • Mattock M.
        • Murphy M.
        • Chelliah R.
        Increases in platelet and red cell counts, blood viscosity, and arterial pressure during mild surface cooling: factors in mortality from coronary and cerebral thrombosis in winter.
        Br Med J (Clin Res Ed). 1984; 289: 1405-1408
        • Anar C.
        • İnal T.
        • Erol S.
        • Polat G.
        • Ünsal İ.
        • Ediboğlu Ö.
        • et al.
        Are meteorological parameters a risk factor for pulmonary embolism? A retrospective analysis of 530 patients.
        Balkan Med J. 2015; 32: 279-284
        • Nimako K.
        • Poloniecki J.
        • Draper A.
        • Rahman T.
        Seasonal variability and meteorological factors: retrospective study of the incidence of pulmonary embolism from a large United Kingdom teaching hospital.
        Respir Care. 2012; 57: 1267-1272
        • Mavri A.
        • Guzic-Salobir B.
        • Salobir-Pajnic B.
        • Keber I.
        • Stare J.
        • Stegnar M.
        Seasonal variation of some metabolic and haemostatic risk factors in subjects with and without coronary artery disease.
        Blood Coagul Fibrinolysis. 2001; 12: 359-365
        • Masotti L.
        • Ceccarelli E.
        • Forconi S.
        • Cappelli R.
        Seasonal variations of pulmonary embolism in hospitalized patients.
        Respir Med. 2005; 99: 1469-1473
        • Montes Santiago J.
        • Rey García G.
        • Mediero Domínguez A.
        Seasonal changes in morbimortality caused by pulmonary thromboembolism in Galicia.
        An Med Interna. 2003; 20: 457-460
        • Hoek G.
        • Brunekreef B.
        • Fischer P.
        • van Wijnen J.
        The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study.
        Epidemiology. 2001; 12: 355-357
        • Milojevic A.
        • Wilkinson P.
        • Armstrong B.
        • Bhaskaran K.
        • Smeeth L.
        • Hajat S.
        Short-term effects of air pollution on a range of cardiovascular events in England and Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality.
        Heart. 2014; 100: 1093-1098