Advertisement

Aging of the endocrine system and its potential impact on sarcopenia

  • Giovanni Vitale
    Correspondence
    Corresponding author at: Istituto Auxologico Italiano, via Zucchi 18, Cusano Milanino (MI) 20095, Italy. Fax: +39 02 61911 3033.
    Affiliations
    Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy

    Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Cusano Milanino (MI), Italy
    Search for articles by this author
  • Matteo Cesari
    Affiliations
    Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France

    INSERM UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
    Search for articles by this author
  • Daniela Mari
    Affiliations
    Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy

    Geriatric Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
    Search for articles by this author

      Highlights

      • The aging of the endocrine system is implicated in the development of sarcopenia.
      • The risk/benefit ratio of androgen replacement therapy is unclear in frail elderly.
      • No benefit of oral DHEA supplementation has been demonstrated on muscle.
      • Targeting oxytocin receptor may represent a new therapeutic strategy for sarcopenia.

      Abstract

      Sarcopenia, occurring as a primary consequence of aging, is a progressive generalized decline of skeletal muscle mass, strength and function. The pathophysiology of sarcopenia is complex and multifactorial. One major cause of muscle mass and strength loss with aging appears to be the alteration in hormonal networks involved in the inflammatory processes, muscle regeneration and protein synthesis.
      This review describes the recent findings concerning the role of the aging on the endocrine system in the development of sarcopenia. We also report the benefits and safety of hormone replacement therapy in elderly subjects and discuss future perspectives in the therapy and prevention of skeletal muscle aging.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cruz-Jentoft A.J.
        • Baeyens J.P.
        • Bauer J.M.
        • Boirie Y.
        • Cederholm T.
        • Landi F.
        • et al.
        Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people.
        Age Ageing. 2010; 39: 412-423https://doi.org/10.1093/ageing/afq034
        • Landi F.
        • Calvani R.
        • Cesari M.
        • Tosato M.
        • Martone A.M.
        • Bernabei R.
        • et al.
        Sarcopenia as the biological substrate of physical frailty.
        Clin Geriatr Med. 2015; 31: 367-374https://doi.org/10.1016/j.cger.2015.04.005
        • Hughes V.A.
        • Frontera W.R.
        • Roubenoff R.
        • et al.
        Longitudinal changes in body composition in older men and women: role of body weight change and physical activity.
        Am J Clin Nutr. 2002; 76: 473-481
        • Frontera W.R.
        • Hughes V.A.
        • Fielding R.A.
        • Fiatarone M.A.
        • Evans W.J.
        • Roubenoff R.
        Aging of skeletal muscle: a 12-yr longitudinal study.
        J Appl Physiol. 2000; 88: 1321-1326
        • Muscaritoli M.
        • Anker S.D.
        • Argiles J.
        • Aversa Z.
        • Bauer J.M.
        • Biolo G.
        • et al.
        Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by special interest groups (sig) “cachexia–anorexia in chronic wasting diseases” and “nutrition in geriatrics”.
        Clin Nutr. 2010; 29: 154-159
        • Vitale G.
        • Salvioli S.
        • Franceschi C.
        Oxidative stress and the ageing endocrine system.
        Nat Rev Endocrinol. 2013; 9: 228-240https://doi.org/10.1038/nrendo.2013.29
        • Feldman H.A.
        • Longcope C.
        • Derby C.A.
        • Johannes C.B.
        • Araujo A.B.
        • Coviello A.D.
        • et al.
        Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study.
        J Clin Endocrinol Metab. 2002; 87: 589e98.19
        • Morley J.E.
        • Perry III, H.M.
        Androgens and women at the menopause and beyond.
        J Gerontol A Biol Sci Med Sci. 2003; 58: M409-M416
        • Baumgartner R.N.
        • Waters D.L.
        • Gallagher D.
        • Morley J.E.
        • Garry P.J.
        Predictors of skeletal muscle mass in elderly men and women.
        Mech Ageing Dev. 1999; 107: 123-136
        • La Colla A.
        • Pronsato L.
        • Milanesi L.
        • Vasconsuelo A.
        17β-Estradiol and testosterone in sarcopenia: role of satellite cells.
        Ageing Res Rev. Nov 2015; 24: 166-177https://doi.org/10.1016/j.arr.2015.07.011
        • Roy T.A.
        • Blackman M.R.
        • Harman S.M.
        • Tobin J.D.
        • Schrager M.
        • Metter E.J.
        Interrelationships of serum testosterone and free testosterone index with FFM and strength in aging men.
        Am J Physiol Endocrinol Metab. 2002; 283: E284-E294
        • Cawthon P.M.
        • Ensrud K.E.
        • Laughlin G.A.
        • Cauley J.A.
        • Dam T.T.
        • Barrett-Connor E.
        • et al.
        Sex hormones and frailty in older men: the osteoporotic fractures in men (MrOS) study.
        J Clin Endocrinol Metab. 2009; 94: 3806-3815https://doi.org/10.1210/jc.2009-0417
        • Krasnoff J.B.
        • Basaria S.
        • Pencina M.J.
        • Jasuja G.K.
        • Vasan R.S.
        • Ulloor J.
        • et al.
        Free testosterone levels are associated with mobility limitation and physical performance in community-dwelling men: the Framingham Offspring Study.
        J Clin Endocrinol Metab. 2010; 95: 2790-2799
        • Renoud A.
        • Ecochard R.
        • Marchand F.
        • Chapurlat R.
        • Szulc P.
        Predictive parameters of accelerated muscle loss in men-MINOS study.
        Am J Med. 2014; 127: 554-561
        • LeBlanc E.S.
        • Wang P.Y.
        • Lee C.G.
        • Barrett-Connor E.
        • Cauley J.A.
        • Hoffman A.R.
        • et al.
        Higher testosterone levels are associated with less loss of lean body mass in older men.
        J Clin Endocrinol Metab. 2011; 96: 3855-3863
        • Orwoll E.
        • Lambert L.C.
        • Marshall L.M.
        • Blank J.
        • Barrett-Connor E.
        • Cauley J.
        • et al.
        Endogenous testosterone levels, physical performance, and fall risk in older men.
        Arch Intern Med. 2006; 166: 2124-2131
        • Schaap L.A.
        • Pluijm S.M.
        • Deeg D.J.
        • Penninx B.W.
        • Nicklas B.J.
        • Lips P.
        • et al.
        Low testosterone levels and decline in physical performance and muscle strength in older men: findings from two prospective cohort studies.
        Clin Endocrinol. 2008; 68: 42-50
        • Hsu B.
        • Cumming R.G.
        • Naganathan V.
        • Blyth F.M.
        • Le Couteur D.G.
        • Seibel M.J.
        • et al.
        Longitudinal relationships of circulating reproductive hormone with functional disability, muscle mass and strength in community-dwelling older men: the concord health and ageing in men project.
        J Clin Endocrinol Metab. 2014; 99: 3310-3318
        • Gielen E.
        • O'Neill T.W.
        • Pye S.R.
        • Adams J.E.
        • Wu F.C.
        • Laurent M.R.
        • et al.
        Endocrine determinants of incident sarcopenia in middle-aged and elderly European men.
        J Cachex Sarcopenia Muscle. 2015; 6: 242-252https://doi.org/10.1002/jcsm.12030
        • Isidori A.M.
        • Balercia G.
        • Calogero A.E.
        • Corona G4.
        • Ferlin A.
        • Francavilla S.
        • et al.
        Outcomes of androgen replacement therapy in adult male hypogonadism: recommendations from the Italian society of endocrinology.
        J Endocrinol Investig. 2015; 38: 103-112https://doi.org/10.1007/s40618-014-0155-9
        • Spitzer M.
        • Huang G.
        • Basaria S.
        • Travison T.G.
        • Bhasin S.
        Risks and benefits of testosterone therapy in older men.
        Nat Rev Endocrinol. 2013 Jul; 9: 414-424https://doi.org/10.1038/nrendo.2013.73
        • Ottenbacher K.J.
        • Ottenbacher M.E.
        • Ottenbacher A.J.
        • Acha A.A.
        • Ostir G.V.
        Androgen treatment and muscle strength in elderly men: a meta-analysis.
        J Am Geriatr Soc. 2006; 54: 1666-1673
        • Neto W.K.
        • Gama E.F.
        • Rocha L.Y.
        • Ramos C.C.
        • Taets W.
        • Scapini K.B.
        • et al.
        Effects of testosterone on lean mass gain in elderly men: systematic review with meta-analysis of controlled and randomized studies.
        Age (Dordr). 2015; 37: 9742https://doi.org/10.1007/s11357-014-9742-0
        • Basaria S.
        • Coviello A.D.
        • Travison T.G.
        • Storer T.W.
        • Farwell W.R.
        • Jette A.M.
        • et al.
        Adverse events associated with testosterone administration.
        N Engl J Med. 2010; 363: 109-122
        • Goodman N.
        • Guay A.
        • Dandona P.
        • Dhindsa S.
        • Faiman C.
        • Cunningham G.R.
        • et al.
        American Association of Clinical Endocrinologists and American College of endocrinology position statement on the association of testosterone and cardiovascular risk.
        Endocr Pract. 2015; 21: 1066-1073https://doi.org/10.4158/EP14434.PS
        • Snyder P.J.
        • Bhasin S.
        • Cunningham G.R.
        • Matsumoto A.M.
        • Stephens-Shields A.J.
        • Cauley J.A.
        • et al.
        Effects of testosterone treatment in older men.
        N Engl J Med. 2016; 374: 611-624https://doi.org/10.1056/NEJMoa1506119
        • Choi S.M.
        • Lee B.M.
        Comparative safety evaluation of selective androgen receptor modulators and anabolic androgenic steroids.
        Expert Opin Drug Saf. 2015; 14: 1773-1785https://doi.org/10.1517/14740338.2015.1094052
        • Papanicolaou D.A.
        • Ather S.N.
        • Zhu H.
        • Zhou Y.
        • Lutkiewicz J.
        • Scott B.B.
        • et al.
        A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia.
        J Nutr Health Aging. 2013; 17: 533-543https://doi.org/10.1007/s12603-013-0335-x
        • Dalton J.T.
        • Barnette K.G.
        • Bohl C.E.
        • Hancock M.L.
        • Rodriguez D.
        • Dodson S.T.
        • et al.
        The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial.
        J Cachex Sarcopenia Muscle. 2011; 2: 153-161
        • Messier V.
        • Rabasa-Lhoret R.
        • Barbat-Artigas S.
        • Elisha B.
        • Karelis A.D.
        • Aubertin-Leheudre M.
        Menopause and sarcopenia: a potential role for sex hormones.
        Maturitas. 2011 Apr; 68: 331-336https://doi.org/10.1016/j.maturitas.2011.01.014
        • Horstman A.M.
        • Dillon E.L.
        • Urban R.J.
        • Sheffield-Moore M.
        The role of androgens and estrogens on healthy aging and longevity.
        J Gerontol A Biol Sci Med Sci. 2012; 67: 1140-1152
        • Sipilä S.
        • Narici M.
        • Kjaer M.
        • Pöllänen E.
        • Atkinson R.A.
        • Hansen M.
        • et al.
        Sex hormones and skeletal muscle weakness.
        Biogerontology. 2013; 14: 231-245https://doi.org/10.1007/s10522-013-9425-8
        • Greising S.M.
        • Baltgalvis K.A.
        • Lowe D.A.
        • Warren G.L.
        Hormone therapy and skeletal muscle strength: a meta-analysis.
        J Gerontol A Biol Sci Med Sci. 2009; 64 ([Epub 2009 Jun 26]): 1071-1081https://doi.org/10.1093/gerona/glp082
        • Maggio M.
        • Lauretani F.
        • Ceda G.P.
        Sex hormones and sarcopenia in older persons.
        Curr Opin Clin Nutr Metab Care. 2013; 16: 3-13https://doi.org/10.1097/MCO.0b013e32835b6044
        • Percheron G.
        • Hogrel J.Y.
        • Denot-Ledunois S.
        • et al.
        Effect of 1-year oral administration of dehydroepiandrosterone to 60- to 80-year-old individuals on muscle function and cross-sectional area: a double-blind placebo-controlled trial.
        Arch Intern Med. 2003; 163: 720-727
        • Kenny A.M.
        • Boxer R.S.
        • Kleppinger A.
        • et al.
        Dehydroepiandrosterone combined with exercise improves muscle strength and physical function in frail older women.
        J Am Geriatr Soc. 2010; 58: 1707-1714
        • Dayal M.
        • Sammel M.D.
        • Zhao J.
        • Hummel A.C.
        • Vandenbourne K.
        • Barnhart K.T.
        Supplementation with DHEA: effect on muscle size, strength, quality of life, and lipids.
        J Women's Health (Larchmt). 2005; 14: 391-400
        • Igwebuike A.
        • Irving B.A.
        • Bigelow M.L.
        • et al.
        Lack of dehydroepiandrosterone effect on a combined endurance and resistance exercise program in post menopausal women.
        J Clin Endocrinol Metab. 2008; 93: 534-538
        • Nair K.S.
        • Rizza R.A.
        • O'Brien P.
        • et al.
        DHEA in elderly women and DHEA or testosterone in elderly men.
        N Engl J Med. 2006; 355: 1647-1659
        • Baker W.L.
        • Karan S.
        • Kenny A.M.
        Effect of dehydroepiandrosterone on muscle strength and physical function in older adults: a systematic review.
        J Am Geriatr Soc. 2011; 59: 997-1002https://doi.org/10.1111/j.1532-5415.2011.03410.x
        • Bodine S.C.
        • Furlow J.D.
        Glucocorticoids and skeletal muscle.
        Adv Exp Med Biol. 2015; 872: 145-176https://doi.org/10.1007/978-1-4939-2895-8_7
        • Nieman L.K.
        Cushing's syndrome: update on signs, symptoms and biochemical screening.
        Eur J Endocrinol. 2015; 173: M33-M38https://doi.org/10.1530/EJE-15-0464
        • Waters D.L.
        • Qualls C.R.
        • Dorin R.I.
        • Veldhuis J.D.
        • Baumgartner R.N.
        Altered growth hormone, cortisol, and leptin secretion in healthy elderly persons with sarcopenia and mixed body composition phenotypes.
        J Gerontol A Biol Sci Med Sci. 2008; 63: 536-541
        • Hassan-Smith Z.K.
        • Morgan S.A.
        • Sherlock M.
        • Hughes B.
        • Taylor A.E.
        • Lavery G.G.
        • et al.
        Gender-specific differences in skeletal muscle 11β-HSD1 expression across healthy aging.
        J Clin Endocrinol Metab. 2015; 100: 2673-2681https://doi.org/10.1210/jc.2015-1516
        • Halfon M.
        • Phan O.
        • Teta D.
        Vitamin D: a review on its effects on muscle strength, the risk of fall, and frailty.
        Biomed Res Int. 2015; 2015: 953241https://doi.org/10.1155/2015/953241
        • Pojednic R.M1.
        • Ceglia L.
        The emerging biomolecular role of vitamin D in skeletal muscle.
        Exerc Sport Sci Rev. 2014; 42: 76-81https://doi.org/10.1249/JES.0000000000000013
        • Wassner S.J.
        • Li J.B.
        • Sperduto A.
        • Norman M.E.
        Vitamin D deficiency, hypocalcaemia, and increased skeletal muscle degradation in rats.
        J Clin Invest. 1983; 72: 102-112
        • Baczynski R.
        • Massry S.G.
        • Magott M.
        • El-Belbessi S.
        • Kohan R.
        • Brautbar N.
        Effect of parathyroid hormone on energy metabolism of skeletal muscle.
        Kidney Int. 1985; 2: 722-727
        • Janssen H.C.
        • Samson M.M.
        • Verhaar H.J.
        Vitamin D deficiency, muscle function, and falls in elderly people.
        Am J Clin Nutr. 2002; 75: 611-615
        • Mosekilde L.
        Vitamin D and the elderly.
        Clin Endocrinol. 2005; 62: 265-281
        • Bischoff-Ferrari H.A.
        • Borchers M.
        • Gudat F.
        • Dürmüller U.
        • Stähelin H.B.
        • Dick W.
        Vitamin D receptor expression in human muscle tissue decreases with age.
        J Bone Miner Res. 2004; 19: 265-269
        • Visser M.
        • Deeg D.J.
        • Lips P.
        • Longitudinal Aging Study Amsterdam
        Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the longitudinal aging study Amsterdam.
        J Clin Endocrinol Metab. 2003; 88: 5766-5772
        • Park S.
        • Ham J.O.
        • Lee B.K.
        A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men.
        Clin Nutr. 2014; 33: 900-905https://doi.org/10.1016/j.clnu.2013.09.016
        • Beaudart C.
        • Buckinx F.
        • Rabenda V.
        • Gillain S.
        • Cavalier E.
        • Slomian J.
        • et al.
        The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials.
        J Clin Endocrinol Metab. 2014; 99: 4336-4345https://doi.org/10.1210/jc.2014-1742
        • Murad M.H.
        • Elamin K.B.
        • Abu Elnour N.O.
        • et al.
        Clinical review: the effect of vitamin D on falls: a systematic review and meta-analysis.
        J Clin Endocrinol Metab. 2011; 96: 2997-3006
        • Bolland M.J.
        • Grey A.
        • Gamble G.D.
        • Reid I.R.
        Vitamin D supplementation and falls: a trial sequential meta-analysis.
        Lancet Diabetes Endocrinol. 2014; 2: 573-580https://doi.org/10.1016/S2213-8587(14)70068-3
        • Veldhuis J.D.
        • Liem A.Y.
        • South S.
        • Weltman A.
        • Weltman J.
        • Clemmons D.A.
        • et al.
        Differential impact of age, sex steroid hormones, and obesity on basal versus pulsatile growth hormone secretion in men as assessed in an ultrasensitive chemiluminescence assay.
        J Clin Endocrinol Metab. 1995; 80: 3209-3222
        • Vitale G.
        • Brugts M.P.
        • Ogliari G.
        • Castaldi D.
        • Fatti L.M.
        • Varewijck A.J.
        • et al.
        Low circulating IGF-I bioactivity is associated with human longevity: findings in centenarians' offspring.
        Aging (Albany NY). 2012; 4: 580-589
        • Jones C.M.
        • Boelaert K.
        The endocrinology of ageing: a mini-review.
        Gerontology. 2015; 61: 291-300https://doi.org/10.1159/000367692
        • Sattler F.R.
        Growth hormone in the aging male.
        Best Pract Res Clin Endocrinol Metab. 2013; 27: 541-555https://doi.org/10.1016/j.beem.2013.05.003
        • Volpato S.
        • Bianchi L.
        • Cherubini A.
        • Landi F.
        • Maggio M.
        • Savino E.
        • et al.
        Prevalence and clinical correlates of sarcopenia in community-dwelling older people: application of the EWGSOP definition and diagnostic algorithm.
        J Gerontol A Biol Sci Med Sci. 2014; 69: 438-446https://doi.org/10.1093/gerona/glt149
        • Tay L.
        • Ding Y.Y.
        • Leung B.P.
        • Ismail N.H.
        • Yeo A.
        • Yew S.
        • et al.
        Sex-specific differences in risk factors for sarcopenia amongst community-dwelling older adults.
        Age (Dordr). 2015; 37: 121https://doi.org/10.1007/s11357-015-9860-3
        • Samaras N.
        • Papadopoulou M.A.
        • Samaras D.
        • Ongaro F.
        Off-label use of hormones as an antiaging strategy: a review.
        Clin Interv Aging. 2014; 9: 1175-1186https://doi.org/10.2147/CIA.S48918
        • Ueno H.
        • Shiiya T.
        • Nakazato M.
        Translational research of ghrelin.
        Ann N Y Acad Sci. 2010; 1200: 120-127https://doi.org/10.1111/j.1749-6632.2010.05509.x
        • Rigamonti A.E.
        • Pincelli A.I.
        • Corrà B.
        • Viarengo R.
        • Bonomo S.M.
        • Galimberti D.
        • et al.
        Plasma ghrelin concentrations in elderly subjects: comparison with anorexia and obese patients.
        J Endocrinol. 2002; 175: R1-R5https://doi.org/10.1677/joe.0.175R001
        • Serra-Prat M.
        • Fernandez X.
        • Burdoy E.
        • Mussoll J.
        • Casamitjana R.
        • Puig-Domingo M.
        The role of ghrelin in the energy homeostasis of elderly people: a population based study.
        J Endocrinol Investig. 2007; 30: 484-490
        • Serra-Prat M.
        • Papiol M.
        • Monteis R.
        • Palomera E.
        • Cabré M.
        Relationship between plasma ghrelin levels and sarcopenia in elderly subjects: a cross-sectional study.
        J Nutr Health Aging. 2015; 19: 669-672https://doi.org/10.1007/s12603-015-0550-8
        • Nass R.
        • Pezzoli S.S.
        • Oliveri M.C.
        • Patrie J.T.
        • Harrell Jr., F.E.
        • Clasey J.L.
        • et al.
        Effects of an oral ghrelin mimetic on body composition and clinical outcomes in healthy older adults: a randomized trial.
        Ann Intern Med. 2008; 149: 601-611
        • White H.K.
        • Petrie C.D.
        • Landschulz W.
        • MacLean D.
        • Taylor A.
        • Lyles K.
        • et al.
        Effects of an oral growth hormone secretagogue in older adults.
        J Clin Endocrinol Metab. 2009; 94: 1198-1206
        • Churchward-Venne T.A.
        • Breen L.
        • Phillips S.M.
        Alterations in human muscle protein metabolism with aging: protein and exercise as countermeasures to offset sarcopenia.
        Biofactors. 2014; 40: 199-205https://doi.org/10.1002/biof.1138
        • Umegaki H.
        Sarcopenia and frailty in older patients with diabetes mellitus.
        Geriatr Gerontol Int. 2016; 16: 293-299https://doi.org/10.1111/ggi.12688
        • Cleasby M.E.
        • Jamieson P.M.
        • Atherton P.J.
        Insulin resistance and sarcopenia: mechanistic links between common co-morbidities.
        J Endocrinol. 2016; 229: R67-R81https://doi.org/10.1530/JOE-15-0533
        • Jang H.C.
        Sarcopenia, frailty, and diabetes in older adults.
        Diabetes Metab J. 2016; 40: 182-189https://doi.org/10.4093/dmj.2016.40.3.182
        • Park S.W.
        • Goodpaster B.H.
        • Strotmeyer E.S.
        • Kuller L.H.
        • Broudeau R.
        • Kammerer C.
        • et al.
        Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study.
        Diabetes Care. 2007; 30: 1507-1512
        • Kim T.N.
        • Park M.S.
        • Yang S.J.
        • Yoo H.J.
        • Kang H.J.
        • Song W.
        • et al.
        Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS).
        Diabetes Care. 2010; 33: 1497-1499
        • Volpato S.
        • Bianchi L.
        • Lauretani F.
        • Lauretani F.
        • Bandinelli S.
        • Guralnik J.M.
        • et al.
        Role of muscle mass and muscle quality in the association between diabetes and gait speed.
        Diabetes Care. 2012; 35: 1672-1679
        • Kalyani R.R.
        • Tra Y.
        • Yeh H.C.
        • Egan J.M.
        • Ferrucci L.
        • Brancati F.L.
        Quadriceps strength, quadriceps power, and gait speed in older U.S. adults with diabetes mellitus: results from the National Health and Nutrition Examination Survey, 1999–2002.
        J Am Geriatr Soc. 2013; 61: 769-775
        • Leng G.
        • Pineda R.
        • Sabatier N.
        • Ludwig M.
        60 years of neuroendocrinology: the posterior pituitary, from Geoffrey Harris to our present understanding.
        J Endocrinol. 2015; 226: T173-T185https://doi.org/10.1530/JOE-15-0087
        • MacDonald K.
        • MacDonald T.M.
        The peptide that binds: a systematic review of oxytocin and its prosocial effects in humans.
        Harv Rev Psychiatry. 2010; 18: 1-21
        • Costa A.
        • Rossi E.
        • Scicchitano B.M.
        • Coletti D.
        • Moresi V.
        • Adamo S.
        Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis.
        Eur J Transl Myol. 2014; 24: 3790https://doi.org/10.4081/ejtm.2014.3790
        • Erkanli K.
        • Erkanli Senturk G.
        • Aydin U.
        • Arbak S.
        • Ercan F.
        • Tuncdemir M.
        • et al.
        Oxytocin protects rat skeletal muscle against ischemia/reperfusion injury.
        Ann Vasc Surg. 2013; 27: 662-670https://doi.org/10.1016/j.avsg.2012.10.012
        • Huffmeijer R.
        • van Ijzendoorn M.H.
        • Bakermans-Kranenburg M.J.
        Ageing and oxytocin: a call for extending human oxytocin research to ageing populations—a mini-review.
        Gerontology. 2013; 59: 32-39https://doi.org/10.1159/000341333
        • Elabd C.
        • Cousin W.
        • Upadhyayula P.
        • Chen R.Y.
        • Chooljian M.S.
        • Li J.
        • et al.
        Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration.
        Nat Commun. 2014; 5: 4082https://doi.org/10.1038/ncomms5082