Advertisement

Kidney disease and venous thromboembolism: Does being woman make the difference?

Published:March 01, 2017DOI:https://doi.org/10.1016/j.ejim.2017.02.012

      Highlights

      • Gender affects the incidence, prevalence, and progression of many renal diseases.
      • Sex differences are evident in the etiology of kidney disease.
      • CKD increases by 25%–30% the risk for thrombotic manifestations.
      • Sex and gender stratified analysis to assess the VTE incidence in patients with kidney disease are scarce.
      • Sex stratified analysis on coagulation system in CKD have never been performed.

      Abstract

      The risk of venous thromboembolism (VTE) is increased across the spectrum of chronic kidney disease (CKD), from mild to more advanced CKD, and typically characterizes nephrotic syndrome (NS). VTE risk in patients with kidney disease may be due to underlying hemostatic abnormalities, including activation of pro-thrombotic factors, inhibition of endogenous anticoagulation systems, enhanced platelet activation and aggregation, and decreased fibrinolytic activity. The mechanisms involved differ depending on the cause of the kidney impairment (i.e. presence of NS or CKD stage). Sex and gender differences, as well as, environmental factors or comorbidities may play a modulating role; however, specific sex and gender data on this topic are still rare. The aim of the present review is to discuss the VTE risk associated with impairment of kidney function, the potential mechanism accounting for it and the impact of sex differences in this clinical setting.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • National Kidney Foundation
        K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification.
        Am J Kidney Dis. 2002; 39: S1-S266
        • Levey A.S.
        • Coresh J.
        Chronic kidney disease.
        Lancet. 2012; 379: 165-180
        • Pippias M.
        • Stel V.S.
        • Abad Diez J.M.
        • et al.
        Renal replacement therapy in Europe: a summary of the 2012 ERA-EDTA Registry Annual Report.
        Clin Kidney J. 2015; 8: 248-261
        • Eckardt K.U.
        • Coresh J.
        • Devuyst O.
        • et al.
        Evolving importance of kidney disease: from subspecialty to global health burden.
        Lancet. 2013; 382: 158-169
        • Silbiger S.
        • Neugarten J.
        Gender and human chronic renal disease.
        Gender Med. 2008; 5: S3-10
        • Saran R.
        • Li Y.
        • Robinson B.
        • et al.
        US Renal Data System 2014 annual data report: epidemiology of kidney disease in the United States.
        Am J Kidney Dis. 2015; 66: S1-S306
        • Pounds L.L.
        • Teodorescu V.J.
        Chronic kidney disease and dialysis access in women.
        J Vasc Surg. 2013; 57: 49S-53S
        • Levey A.S.
        • Stevens L.A.
        • Schmid C.H.
        • et al.
        A new equation to estimate glomerular filtration rate.
        Ann Intern Med. 2009; 150: 604-612
        • Wetzels J.F.
        • Kiemeney L.A.
        • Swinkels D.W.
        • Willems H.L.
        • den Heijer M.
        Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study.
        Kidney Int. 2007; 72: 632-637
        • Silbiger S.R.
        • Neugarten J.
        The role of gender in the progression of renal disease.
        Adv Ren Replace Ther. 2003; 10: 3-14
        • Neugarten J.
        • Acharya A.
        • Sibiger S.
        Effect of gender on the progression of nondiabetic renal disease: a meta-analysis.
        J Am Soc Nephrol. 2000; 11: 319-329
        • Maric C.
        • Sullivan S.
        Estrogens and the diabetic kidney.
        Gender Med. 2008; 5: S103-S113
        • Maric C.
        Sex, diabetes and the kidney.
        Am J Physiol Renal Physiol. 2009; 296: F680-F688
        • Halbesma N.
        • Brantsma A.H.
        • Bakker S.J.
        • et al.
        Gender differences in predictors of the decline of renal function in the general population.
        Kidney Int. 2008; 74: 505-512
        • Iseki K.
        • Iseki C.
        • Ikemiya Y.
        • Fukiyama K.
        Risk of developing end-stage renal disease in a cohort of mass screening.
        Kidney Int. 1996; 49: 800-805
        • Taal M.W.
        • Brenner B.M.
        Predicting initiation and progression of chronic kidney disease: developing renal risk scores.
        Kidney Int. 2006; 70: 1694-1705
        • Baylis C.
        Age-dependent glomerular damage in the rat. Dissociation between glomerular injury and both glomerular hypertension and hypertrophy. Male gender as a primary risk factor.
        J Clin Invest. 1994; 94: 1823-1829
        • Iseki K.
        Gender differences in chronic kidney disease.
        Kidney Int. 2008; 74: 415-417
        • Si H.
        • Banga R.S.
        • Kapitsinou P.
        • et al.
        Human and murine kidneys show gender- and species-specific gene expression differences in response to injury.
        PLoS One. 2009; 4e4802
        • Eriksen B.O.
        • Ingebretsen O.C.
        The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age.
        Kidney Int. 2006; 69: 375-382
        • Coresh J.
        • Astor B.C.
        • Greene T.
        • Eknoyan G.
        • Levey A.S.
        Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey.
        Am J Kidney Dis. 2003; 41: 1-12
        • Menon V.
        • Sarnak M.J.
        The epidemiology of chronic kidney disease stages 1 to 4 and cardiovascular disease: a high-risk combination.
        Am J Kidney Dis. 2005; 45: 223-232
        • Orth S.R.
        • Ritz E.
        The nephrotic syndrome.
        N Engl J Med. 1998; 338: 1202-1211
        • Hull R.P.
        • Goldsmith D.J.
        Nephrotic syndrome in adults.
        BMJ. 2008; 336: 1185-1189
        • Kodner C.
        Nephrotic syndrome in adults: diagnosis and management.
        Am Fam Physician. 2009; 80: 1129-1134
        • Hogan J.
        • Radhakrishnan J.
        The treatment of minimal change disease in adults.
        J Am Soc Nephrol. 2013; 24: 702-711
        • McGrogan A.
        • Franssen C.F.
        • de Vries C.S.
        The incidence of primary glomerulonephritis worldwide: a systematic review of the literature.
        Nephrol Dial Transplant. 2011; 26: 414-430
        • Lefaucheur C.
        • Stengel B.
        • Nochy D.
        • et al.
        Membranous nephropathy and cancer: epidemiologic evidence and determinants of high-risk cancer association.
        Kidney Int. 2006; 70: 1510-1517
        • Mannucci P.M.
        • Tripodi A.
        Hemostatic defects in liver and renal dysfunction.
        Hematology Am Soc Hematol Educ Program. 2012; 2012: 168-173
        • El Nahas M.
        Cardio-Kidney-Damage: a unifying concept.
        Kidney Int. 2010; 78: 14-18
        • Palmer S.C.
        • Di M.L.
        • Razavian M.
        • et al.
        Effects of antiplatelet therapy on mortality and cardiovascular and bleeding outcomes in persons with chronic kidney disease: a systematic review and meta-analysis.
        Ann Intern Med. 2012; 156: 445-459
        • Wiesholzer M.
        • Kitzwogerer M.
        • Harm F.
        • et al.
        Prevalence of preterminal pulmonary thromboembolism among patients on maintenance hemodialysis treatment before and after introduction of recombinant erythropoietin.
        Am J Kidney Dis. 1999; 33: 702-708
        • Stein P.D.
        • Henry J.W.
        Prevalence of acute pulmonary embolism among patients in a general hospital and at autopsy.
        Chest. 1995; 108: 978-981
        • Mahmoodi B.K.
        • Gansevoort R.T.
        • Næss I.A.
        • et al.
        Association of mild to moderate chronic kidney disease with venous thromboembolism: pooled analysis of five prospective general population cohorts.
        Circulation. 2012; 126: 1964-1971
        • Wattanakit K.
        • Cushman M.
        • Stehman-Breen C.
        • Heckbert S.R.
        • Folsom A.R.
        Chronic kidney disease increases risk for venous thromboembolism.
        J Am Soc Nephrol. 2008; 19: 135-140
        • Mahmoodi B.K.
        • Gansevoort R.T.
        • Veeger N.J.
        • et al.
        Microalbuminuria and risk of venous thromboembolism.
        JAMA. 2009; 301: 1790-1797
        • Ocak G.
        • Verduijn M.
        • Vossen C.Y.
        • et al.
        Chronic kidney disease stages 1–3 increase the risk of venous thrombosis.
        J Thromb Haemost. 2010; 8: 2428-2435
        • Christiansen C.F.
        • Schmidt M.
        • Lamberg A.L.
        • et al.
        Kidney disease and risk of venous thromboembolism: a nationwide population-based case-control study.
        J Thromb Haemost. 2014; 12: 1449-1454
        • Abbott K.C.
        • Cruess D.F.
        • Agodoa L.Y.
        • Sawyers E.S.
        • Tveit D.P.
        Early renal insufficiency and late venous thromboembolism after renal transplantation in the United States.
        Am J Kidney Dis. 2004; 43: 120-130
        • Geerts W.H.
        • Pineo G.F.
        • Heit J.A.
        • et al.
        Prevention of venous thromboembolism: The Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy.
        Chest. 2004; 126: 338S-400S
        • Kayali F.
        • Najjar R.
        • Aswad F.
        • Matta F.
        • Stein P.D.
        Venous thromboembolism in patients hospitalized with nephrotic syndrome.
        Am J Med. 2008; 121: 226-230
        • Kerlin B.A.
        • Ayoob R.
        • Smoyer W.E.
        Epidemiology and pathophysiology of nephrotic syndrome-associated thromboembolic disease.
        Clin J Am Soc Nephrol. 2012; 7: 513-520
        • Kerlin B.A.
        • Blatt N.B.
        • Fuh B.
        • et al.
        Epidemiology and risk factors for thromboembolic complications of childhood nephrotic syndrome: a Midwest Pediatric Nephrology Consortium (MWPNC) study.
        J Pediatr. 2009; 155: 105-110
        • Lionaki S.
        • Derebail V.K.
        • Hogan S.L.
        • et al.
        Venous thromboembolism in patients with membranous nephropathy.
        Clin J Am Soc Nephrol. 2012; 7: 43-51
        • Hamed R.M.
        • Shomaf M.
        Congenital nephrotic syndrome: a clinico-pathologic study of thirty children.
        J Nephrol. 2001; 14: 104-109
        • Singhal R.
        • Brimble K.S.
        Thrombo-embolic complications in the nephrotic syndrome: pathophysiology and clinical management.
        Thromb Res. 2006; 118: 397-407
        • Mahmoodi B.K.
        • ten Kate M.K.
        • Waanders F.
        • et al.
        High absolute risks and predictors of venous and arterial thromboembolic events in patients with nephrotic syndrome: results from a large retrospective cohort study.
        Circulation. 2008; 117: 224-230
        • Jalal D.I.
        • Chonchol M.
        • Targher G.
        Disorders of hemostasis associated with chronic kidney disease.
        Semin Thromb Hemost. 2010; 36: 34-40
        • Shlipak M.G.
        • Fried L.F.
        • Stehman-Breen C.
        • Siscovick D.
        • Newman A.B.
        Chronic renal insufficiency and cardiovascular events in the elderly: findings from the Cardiovascular Health Study.
        Am J Geriatr Cardiol. 2004; 13: 81-90
        • Kario K.
        • Matsuo T.
        • Kobayashi H.
        • et al.
        Factor VII hyperactivity and endothelial cell damage are found in elderly hypertensives only when concomitant with microalbuminuria.
        Arterioscler Thromb Vasc Biol. 1996; 16: 455-461
        • Gruden G.
        • Cavallo-Perin P.
        • Romagnoli R.
        • Olivetti C.
        • Frezet D.
        • Pagano G.
        Prothrombin fragment 1 2 and antithrombin III-thrombin complex in microalbuminuric type 2 diabetic patients.
        Diabet Med. 1994; 11: 485-488
        • Gruden G.
        • Cavallo-Perin P.
        • Bazzan M.
        • Stella S.
        • Vuolo A.
        • Pagano G.
        PAI-1 and factor VII activity are higher in IDDM patients with microalbuminuria.
        Diabetes. 1994; 43: 426-429
        • Clausen P.
        • Feldt-Rasmussen B.
        • Jensen G.
        • Jensen J.S.
        Endothelial haemostatic factors are associated with progression of urinary albumin excretion in clinically healthy subjects: a 4-year prospective study.
        Clin Sci (Lond). 1999; 97: 37-43
        • Tveit D.P.
        • Hypolite I.O.
        • Hshieh P.
        • et al.
        Chronic dialysis patients have high risk for pulmonary embolism.
        Am J Kidney Dis. 2002; 39: 1011-1017
        • Mahmoodi B.K.
        • Mulder A.B.
        • Waanders F.
        • et al.
        The impact of antiproteinuric therapy on the prothrombotic state in patients with overt proteinuria.
        J Thromb Haemost. 2011; 9: 2416-2423
        • Tkaczyk M.
        • Baj Z.
        Surface markers of platelet function in idiopathic nephritic syndrome in children.
        Pediatr Nephrol. 2002; 17: 673-677
        • Lutz J.
        • Menke J.
        • Sollinger D.
        • Schinzel H.
        • Thürmel K.
        Haemostasis in chronic kidney disease.
        Nephrol Dial Transplant. 2014; 29: 29-40
        • Zupan I.P.
        • Sabovic M.
        • Salobir B.
        • Ponikvar J.B.
        • Cernelc P.
        Utility of in vitro closure time test for evaluating platelet related primary hemostasis in dialysis patients.
        Am J Kidney Dis. 2003; 42: 746-751
        • Lim W.
        • Dentali F.
        • Eikelboom J.W.
        • Crowther M.A.
        Meta-analysis: low molecular-weight heparin and bleeding in patients with severe renal insufficiency.
        Ann Intern Med. 2006; 144: 673-684
        • Gigante A.
        • Barbano B.
        • Sardo L.
        • et al.
        Hypercoagulability and nephrotic syndrome.
        Curr Vasc Pharmacol. 2014; 12: 512-517
        • Charlesworth J.A.
        • Gracey D.M.
        • Pussell B.A.
        Adult nephrotic syndrome: non-specific strategies for treatment.
        Nephrology. 2008; 13: 45-50
        • Shlipak M.G.
        • Fried L.F.
        • Crump C.
        • et al.
        Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency.
        Circulation. 2003; 107: 87-92
        • Wattanakit K.
        • Cushman M.
        Chronic kidney disease and venous thromboembolism: epidemiology and mechanisms.
        Curr Opin Pulm Med. 2009; 15: 408-412
        • Leizorovicz A.
        • Cohen A.T.
        • Turpie A.G.
        • Olsson C.G.
        • Vaitkus P.T.
        • Goldhaber S.Z.
        Randomized, placebo-controlled trial of dalteparin for the prevention of venous thromboembolism in acutely ill medical patients.
        Circulation. 2004; 110: 874-879
        • Hughes S.
        • Szeki I.
        • Nash M.J.
        • Thachil J.
        Anticoagulation in chronic kidney disease patients-the practical aspects.
        Clin Kidney J. 2014; 7: 442-449
        • Molino D.
        • De Lucia D.
        • Gaspare De Santo N.
        Coagulation disorders in uremia.
        Semin Nephrol. 2006; 26: 46-51
        • Castellucci L.A.
        • Cameron C.
        • Le Gal G.
        • et al.
        Efficacy and safety outcomes of oral anticoagulants and antiplatelet drugs in the secondary prevention of venous thromboembolism: systematic review and network meta-analysis.
        BMJ. 2013; 347: f5133
        • Sirolli V.
        • Ballone E.
        • Garofalo D.
        • et al.
        Platelet activation markers in patients with nephrotic syndrome. A comparative study of different platelet function tests.
        Nephron. 2002; 91: 424-430
        • Jackson C.A.
        • Greaves M.
        • Patterson A.D.
        • Brown C.B.
        • Preston F.E.
        Relationship between platelet aggregation, thromboxane synthesis and albumin concentration in nephritic syndrome.
        Br J Haematol. 1982; 52: 69-77
        • Schieppati A.
        • Dodesini P.
        • Benigni A.
        • et al.
        The metabolism of arachidonic acid by platelets in nephrotic syndrome.
        Kidney Int. 1984; 25: 671-676
        • Remuzzi G.
        • Mecca G.
        • Marchesi D.
        • et al.
        Platelet hyperaggregability and the nephrotic syndrome.
        Thromb Res. 1979; 16: 345-354
        • Eneman B.
        • Freson K.
        • van den Heuve L.
        • et al.
        PACAP deficiency associated with increased platelet count and aggregability in nephrotic syndrome.
        J Thromb Haemost. 2015; 13: 755-767
        • Ay C.
        • Simanek R.
        • Vormittag R.
        • et al.
        High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS).
        Blood. 2008; 112: 2703-2708
        • Kyrle P.A.
        • Hron G.
        • Eichinger S.
        • Wagner O.
        Circulating P-selectin and the risk of recurrent venous thromboembolism.
        Thromb Haemost. 2007; 97: 880-883
        • Robert A.
        • Olmer M.
        • Sampol J.
        • Gugliotta J.E.
        • Casanova P.
        Clinical correlation between hypercoagulability and thrombo-embolic phenomena.
        Kidney Int. 1987; 31: 830-835
        • Hedges S.J.
        • Dehoney S.B.
        • Hooper J.S.
        • Amanzadeh J.
        • Busti A.J.
        Evidence-based treatment recommendations for uremic bleeding.
        Nat Clin Pract Nephrol. 2007; 3: 138-153
        • Anderson F.A.
        • Wheeler H.B.
        • Goldberg R.J.
        • et al.
        A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism.
        Arch Intern Med. 1991; 151: 933-938
        • Silverstein M.D.
        • Heit J.A.
        • Mohr D.N.
        • Petterson T.M.
        • O'Fallon W.M.
        • Melton J.
        Trends in the incidence of deep vein thrombosis and pulmonary embolism.
        Arch Intern Med. 1998; 158: 585-593
        • White R.H.
        • Zhou H.
        • Romano P.S.
        Incidence of idiopathic deep venous thrombosis and secondary thromboembolism among ethnic groups in California.
        Ann Intern Med. 1998; 128: 737-740
        • Fowkes F.J.
        • Price J.F.
        • Fowkes F.G.
        Incidence of diagnosed deep vein thrombosis in the general population: systematic review.
        Eur J Vasc Endovasc Surg. 2003; 25: 1-5
        • Moores L.
        • Bilello K.L.
        • Murin S.
        Sex and gender issues and venous thromboembolism.
        Clin Chest Med. 2004; 25: 281-297
        • Romero A.
        • Alonso C.
        • Rincon M.
        • et al.
        Risk of venous thromboembolic disease in women: a qualitative systematic review.
        Eur J Obstet Gynecol Reprod Biol. 2005; 121: 8-17
        • Huisman M.V.
        • Buller H.R.
        • ten Cate J.W.
        • Vreeken J.
        Serial impedance plethysmography for suspected deep venous thrombosis in outpatients. The Amsterdam General Practitioner Study.
        N Engl J Med. 1986; 314: 823-828
        • Beebe H.G.
        • Scissons R.P.
        • Salles-Cunha S.X.
        • et al.
        Gender bias in use of venous ultrasonography for diagnosis of deep venous thrombosis.
        J Vasc Surg. 1995; 22: 538-542
        • Heit J.A.
        Venous thromboembolism: disease burden, outcomes and risk factors.
        J Thromb Haemost. 2005; 3: 1611-1617
        • Severinsen M.T.
        • Johnsen S.P.
        • Tjønneland A.
        • Overvad K.
        • Dethlefsen C.
        • Kristensen S.R.
        Body height and sex-related differences in incidence of venous thromboembolism: a Danish follow up study.
        Eur J Intern Med. 2010; 21: 268-272
        • McRae S.
        • Tran H.
        • Shulman S.
        • Ginsberg J.
        • Kearon C.
        Effect of patient's sex on risk of recurrent venous thromboembolism: a meta-analysis.
        Lancet. 2006; 368: 371-378
        • Ismail G.
        • Mircescu G.
        • Ditoiu A.V.
        • Tacu B.D.
        • Jurubita R.
        • Harza M.
        Risk factors for predicting venous thromboembolism in patients with nephrotic syndrome: focus on haemostasis-related parameters.
        Int Urol Nephrol. 2014; 46: 787-792
        • Valéra M.C.
        • Gratacap M.P.
        • Gourdy P.
        • et al.
        Chronic estradiol treatment reduces platelet responses and protects mice from thromboembolism through the hematopoietic estrogen receptor α.
        Blood. 2012; 120: 1703-1712
        • Valéra M.C.
        • Fontaine C.
        • Lenfant F.
        • et al.
        Protective hematopoietic impact of estrogens in a mouse model of thrombosis: respective roles of nuclear vs membrane estrogen receptor α.
        Endocrinology. 2015; ([Epub ahead of print])
        • Knol H.M.
        • Kemperman R.F.
        • Kluin-Nelemans H.C.
        • Mulder A.B.
        • Meijer K.
        Haemostatic variables during normal menstrual cycle. A systematic review.
        Thromb Haemost. 2012; 107: 22-29
        • Westhoff C.L.
        • Eisenberger A.
        • Tang R.
        • Cremers S.
        • Grossman L.V.
        • Pike M.C.
        Clotting factor changes during the first cycle of oral contraceptive use.
        Contraception. 2015; ([Epub ahead of print])
        • Hoibraaten E.
        • Qvigstad E.
        • Anderson TO
        • Mowinckel M.C.
        • Sandset P.M.
        The effects of hormone replacement therapy (HRT) on hemostatic variables in women with previous venous thromboembolism—results from a randomized, double-blind, clinical trial.
        Thromb Haemost. 2001; 85: 775-881
        • Cleuren A.C.
        • Van der Linden I.K.
        • De Visser Y.P.
        • et al.
        17α-ethinylestradiol rapidly alters transcript levels of murine coagulation genes via estrogen receptor α.
        J Thromb Haemost. 2010; 8: 1838-1846
        • Kucher N.
        • Koo S.
        • Quiroz R.
        • et al.
        Electronic alerts to prevent venous thromboembolism among hospitalized patients.
        N Engl J Med. 2005; 352: 969-977
        • Haas S.K.
        • Hach-Wunderle V.
        • Mader F.H.
        • Ruster K.
        • Paar W.D.
        An evaluation of venous thromboembolic risk in acutely ill medical patients immobilized at home: the AT-HOME Study.
        Clin Appl Thromb Hemost. 2007; 13: 7-13
        • Goldhaber S.Z.
        • Tapson V.F.
        A prospective registry of 5,451 patients with ultrasound-confirmed deep vein thrombosis.
        Am J Cardiol. 2004; 93: 259-262
        • Chopard P.
        • Spirk D.
        • Bounameaux H.
        Identifying acutely ill medical patients requiring thromboprophylaxis.
        J Thromb Haemost. 2006; 4: 915-916
        • Lecumberri R.
        • Marqués M.
        • Díaz-Navarlaz M.T.
        • et al.
        Maintained effectiveness of an electronic alert system to prevent venous thromboembolism among hospitalized patients.
        Thromb Haemost. 2008; 100: 699-704
        • Cohen A.T.
        • Alikhan R.
        • Arcelus J.I.
        • et al.
        Assessment of venous thromboembolism risk and the benefits of thromboprophylaxis in medical patients.
        Thromb Haemost. 2005; 94: 750-759
        • Samama M.M.
        • Dahl O.E.
        • Mismetti P.
        • et al.
        An electronic tool for venous thromboembolism prevention in medical and surgical patients.
        Haematologica. 2006; 91: 64-70
        • Barbar S.
        • Noventa F.
        • Rossetto V.
        • et al.
        A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score.
        J Thromb Haemost. 2010; 8: 2450-2457
        • Tosetto A.
        • Iorio A.
        • Marcucci M.
        • et al.
        Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: a proposed prediction score (DASH).
        J Thromb Haemost. 2012; 10: 1019-1025
        • Pisters R.
        • Lane D.A.
        • Nieuwlaat R.
        • de Vos C.B.
        • Crijns H.J.
        • Lip G.Y.
        A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey.
        Chest. 2010; 138: 1093-1100