Advertisement

Gut microbiota and obesity: Concepts relevant to clinical care

Published:October 27, 2017DOI:https://doi.org/10.1016/j.ejim.2017.10.005

      Highlights

      • There is a complex relationship between gut microbiota and obesity.
      • A causal relationship has been shown in rodents but not in humans.
      • Gut microbiota composition, function and metabolite output should be considered.
      • Different approaches to treat metabolic disease lead to changes in gut microbiota.
      • Modulation of the gut microbiota has potential in clinical care.

      Abstract

      The composition and function of gut microbiota play a role in obesity and metabolic disease, yet the mechanisms have not been fully described. As new discoveries and advances in the field have occurred, the relevance of gut microbiota in clinical care has become more substantial. There is promising potential for manipulation of the gut microbiota as treatment of obesity and associated health complications, both as a standalone therapy and as part of interventions such as weight loss. In this review we have compiled knowledge and concepts that are important in the consideration of gut microbiota for clinical care.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zhao L.
        The gut microbiota and obesity: from correlation to causality.
        Nat Rev Microbiol. 2013; 11: 639-647https://doi.org/10.1038/nrmicro3089
        • Tremaroli V.
        • Bäckhed F.
        Functional interactions between the gut microbiota and host metabolism.
        Nature. 2012; 489: 242-249https://doi.org/10.1038/nature11552
        • Khan M.T.
        • Nieuwdorp M.
        • Bäckhed F.
        Microbial modulation of insulin sensitivity.
        Cell Metab. 2014; 20: 753-760https://doi.org/10.1016/j.cmet.2014.07.006
        • Le Chatelier E.
        • Nielsen T.
        • Qin J.
        • Prifti E.
        • Hildebrand F.
        • Falony G.
        • et al.
        Richness of human gut microbiome correlates with metabolic markers.
        Nature. 2013; 500: 541-546https://doi.org/10.1038/nature12506
        • Karlsson F.H.
        • Tremaroli V.
        • Nookaew I.
        • Bergström G.
        • Behre C.J.
        • Fagerberg B.
        • et al.
        Gut metagenome in European women with normal, impaired and diabetic glucose control.
        Nature. 2013; 498: 99-103https://doi.org/10.1038/nature12198
        • Qin J.
        • Li Y.
        • Cai Z.
        • Li S.
        • Zhu J.
        • Zhang F.
        • et al.
        A metagenome-wide association study of gut microbiota in type 2 diabetes.
        Nature. 2012; 490: 55-60https://doi.org/10.1038/nature11450
        • Zhang X.
        • Shen D.
        • Fang Z.
        • Jie Z.
        • Qiu X.
        • Zhang C.
        • et al.
        Human gut microbiota changes reveal the progression of glucose intolerance.
        PLoS ONE. 2013; 8e71108https://doi.org/10.1371/journal.pone.0071108
        • Kirpich I.A.
        • Marsano L.S.
        • McClain C.J.
        Gut-liver axis, nutrition, and non-alcoholic fatty liver disease.
        Clin Biochem. 2015; 48: 923-930https://doi.org/10.1016/j.clinbiochem.2015.06.023
        • Karlsson F.H.
        • Fåk F.
        • Nookaew I.
        • Tremaroli V.
        • Fagerberg B.
        • Petranovic D.
        • et al.
        Symptomatic atherosclerosis is associated with an altered gut metagenome.
        Nat Commun. 2012; 3: 1245https://doi.org/10.1038/ncomms2266
        • GD Wu
        • Chen J.
        • Hoffmann C.
        • Bittinger K.
        • Chen Y.-Y.
        • Keilbaugh S.A.
        • et al.
        Linking long-term dietary patterns with gut microbial enterotypes.
        Science. 2011; 334: 105-108https://doi.org/10.1126/science.1208344
        • Kong L.C.
        • Holmes B.A.
        • Cotillard A.
        • Habi-Rachedi F.
        • Brazeilles R.
        • Gougis S.
        • et al.
        Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects.
        PLoS ONE. 2014; 9e109434https://doi.org/10.1371/journal.pone.0109434
        • Griffin N.W.
        • Ahern P.P.
        • Cheng J.
        • Heath A.C.
        • Ilkayeva O.
        • Newgard C.B.
        • et al.
        Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions.
        Cell Host Microbe. 2017; 21: 84-96https://doi.org/10.1016/j.chom.2016.12.006
        • Ridaura V.K.
        • Faith J.J.
        • Rey F.E.
        • Cheng J.
        • Duncan A.E.
        • Kau A.L.
        • et al.
        Gut microbiota from twins discordant for obesity modulate metabolism in mice.
        Science. 2013; 341: 1241214https://doi.org/10.1126/science.1241214
        • Cho I.
        • Yamanishi S.
        • Cox L.
        • Methé B.A.
        • Zavadil J.
        • Li K.
        • et al.
        Antibiotics in early life alter the murine colonic microbiome and adiposity.
        Nature. 2012; 488: 621-626https://doi.org/10.1038/nature11400
        • de la Cuesta-Zuluaga J.
        • Mueller N.T.
        • Corrales-Agudelo V.
        • Velásquez-Mejía E.P.
        • Carmona J.A.
        • Abad J.M.
        • et al.
        Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut.
        Diabetes Care. 2017; 40: 54-62https://doi.org/10.2337/dc16-1324
        • Shin N.-R.
        • Lee J.-C.
        • Lee H.-Y.
        • Kim M.-S.
        • Whon T.W.
        • Lee M.-S.
        • et al.
        An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice.
        Gut. 2013; 63: 727-735https://doi.org/10.1136/gutjnl-2012-303839
        • Forslund K.
        • Hildebrand F.
        • Nielsen T.
        • Falony G.
        • Le Chatelier E.
        • Sunagawa S.
        • et al.
        Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.
        Nature. 2015; 528: 262-266https://doi.org/10.1038/nature15766
        • Klaassen C.D.
        • Cui J.Y.
        Review: mechanisms of how the intestinal microbiota alters the effects of drugs and bile acids.
        Drug Metab Dispos. 2015; 43: 1505-1521https://doi.org/10.1124/dmd.115.065698
        • Cani P.D.
        • Amar J.
        • Iglesias M.A.
        • Poggi M.
        • Knauf C.
        • Bastelica D.
        • et al.
        Metabolic endotoxemia initiates obesity and insulin resistance.
        Diabetes. 2007; 56: 1761-1772https://doi.org/10.2337/db06-1491
        • Erridge C.
        • Attina T.
        • Spickett C.M.
        • Webb D.J.
        A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation.
        Am J Clin Nutr. 2007; 86: 1286-1292
        • Postler T.S.
        • Ghosh S.
        Understanding the holobiont: how microbial metabolites affect human health and shape the immune system.
        Cell Metab. 2017; 26: 110-130https://doi.org/10.1016/j.cmet.2017.05.008
        • Sonnenburg J.L.
        • Bäckhed F.
        Diet-microbiota interactions as moderators of human metabolism.
        Nature. 2016; 535: 56-64https://doi.org/10.1038/nature18846
        • Morrison D.J.
        • Preston T.
        Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.
        Gut Microbes. 2016; 7: 189-200https://doi.org/10.1080/19490976.2015.1134082
        • Turnbaugh P.J.
        • Ley R.E.
        • Mahowald M.A.
        • Magrini V.
        • Mardis E.R.
        • Gordon J.I.
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1131https://doi.org/10.1038/nature05414
        • Schwiertz A.
        • Taras D.
        • Schäfer K.
        • Beijer S.
        • Bos N.A.
        • Donus C.
        • et al.
        Microbiota and SCFA in lean and overweight healthy subjects.
        Obesity. 2010; 18: 190-195https://doi.org/10.1038/oby.2009.167
        • Canfora E.E.
        • Jocken J.W.
        • Blaak E.E.
        Short-chain fatty acids in control of body weight and insulin sensitivity.
        Nat Rev Endocrinol. 2015; 11: 577-591https://doi.org/10.1038/nrendo.2015.128
        • Frost G.
        • Sleeth M.L.
        • Sahuri-Arisoylu M.
        • Lizarbe B.
        • Cerdan S.
        • Brody L.
        • et al.
        The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism.
        Nat Commun. 2014; 53611https://doi.org/10.1038/ncomms4611
        • Monteiro-Sepulveda M.
        • Touch S.
        • Mendes-Sá C.
        • André S.
        • Poitou C.
        • Allatif O.
        • et al.
        Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling.
        Cell Metab. 2015; 22: 113-124https://doi.org/10.1016/j.cmet.2015.05.020
        • Touch S.
        • Clément K.
        • André S.
        T cell populations and functions are altered in human obesity and type 2 diabetes.
        Curr Diab Rep. 2017; 1781https://doi.org/10.1007/s11892-017-0900-5
        • Eckle S.B.G.
        • Corbett A.J.
        • Keller A.N.
        • Chen Z.
        • Godfrey D.I.
        • Liu L.
        • et al.
        Recognition of vitamin B precursors and byproducts by mucosal associated invariant T cells.
        J Biol Chem. 2015; 290: 30204-30211https://doi.org/10.1074/jbc.R115.685990
        • Koeth R.A.
        • Wang Z.
        • Levison B.S.
        • Buffa J.A.
        • Org E.
        • Sheehy B.T.
        • et al.
        Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis.
        Nat Med. 2013; 19: 576-585https://doi.org/10.1038/nm.3145
        • Tang W.H.W.
        • Hazen S.L.
        The contributory role of gut microbiota in cardiovascular disease.
        J Clin Invest. 2014; 124: 4204-4211https://doi.org/10.1172/JCI72331
        • Tang W.H.W.
        • Wang Z.
        • Levison B.S.
        • Koeth R.A.
        • Britt E.B.
        • Fu X.
        • et al.
        Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.
        N Engl J Med. 2013; 368: 1575-1584https://doi.org/10.1056/NEJMoa1109400
        • Pedersen H.K.
        • Gudmundsdottir V.
        • Nielsen H.B.
        • Hyotylainen T.
        • Nielsen T.
        • Jensen B.A.H.
        • et al.
        Human gut microbes impact host serum metabolome and insulin sensitivity.
        Nature. 2016; 535: 376-381https://doi.org/10.1038/nature18646
        • Newgard C.B.
        • An J.
        • Bain J.R.
        • Muehlbauer M.J.
        • Stevens R.D.
        • Lien L.F.
        • et al.
        A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance.
        Cell Metab. 2009; 9: 311-326https://doi.org/10.1016/j.cmet.2009.02.002
        • Yatsunenko T.
        • Rey F.E.
        • Manary M.J.
        • Trehan I.
        • Dominguez-Bello M.G.
        • Contreras M.
        • et al.
        Human gut microbiome viewed across age and geography.
        Nature. 2012; 486: 222-227https://doi.org/10.1038/nature11053
        • De Filippo C.
        • Cavalieri D.
        • Di Paola M.
        • Ramazzotti M.
        • Poullet J.B.
        • Massart S.
        • et al.
        Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.
        Proc Natl Acad Sci U S A. 2010; 107: 14691-14696https://doi.org/10.1073/pnas.1005963107
        • Schnorr S.L.
        • Candela M.
        • Rampelli S.
        • Centanni M.
        • Consolandi C.
        • Basaglia G.
        • et al.
        Gut microbiome of the Hadza hunter-gatherers.
        Nat Commun. 2014; 53654https://doi.org/10.1038/ncomms4654
        • Clemente J.C.
        • Pehrsson E.C.
        • Blaser M.J.
        • Sandhu K.
        • Gao Z.
        • Wang B.
        • et al.
        The microbiome of uncontacted Amerindians.
        Sci Adv. 2015; 1https://doi.org/10.1126/sciadv.1500183
        • Liu H.
        • Hu C.
        • Zhang X.
        • Jia W.
        Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes.
        J Diabetes Investig. 2017; https://doi.org/10.1111/jdi.12687
        • Cotillard A.
        • Kennedy S.P.
        • Kong L.C.
        • Prifti E.
        • Pons N.
        • Le Chatelier E.
        • et al.
        Dietary intervention impact on gut microbial gene richness.
        Nature. 2013; 500: 585-588https://doi.org/10.1038/nature12480
        • Beaumont M.
        • Goodrich J.K.
        • Jackson M.A.
        • Yet I.
        • Davenport E.R.
        • Vieira-Silva S.
        • et al.
        Heritable components of the human fecal microbiome are associated with visceral fat.
        Genome Biol. 2016; 17189https://doi.org/10.1186/s13059-016-1052-7
        • Turnbaugh P.J.
        • Hamady M.
        • Yatsunenko T.
        • Cantarel B.L.
        • Duncan A.
        • Ley R.E.
        • et al.
        A core gut microbiome in obese and lean twins.
        Nature. 2008; 457: 480-484https://doi.org/10.1038/nature07540
        • Menni C.
        • Jackson M.A.
        • Pallister T.
        • Steves C.J.
        • Spector T.D.
        • Valdes A.M.
        Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain.
        Int J Obes. 2017; 2005 (41:1099–105)https://doi.org/10.1038/ijo.2017.66
        • Sze M.A.
        • Schloss P.D.
        Looking for a signal in the noise: revisiting obesity and the microbiome.
        MBio. 2016; 7https://doi.org/10.1128/mBio.01018-16
        • Derrien M.
        • Belzer C.
        • de Vos W.M.
        Akkermansia muciniphila and its role in regulating host functions.
        Microb Pathog. 2017; 106: 171-181https://doi.org/10.1016/j.micpath.2016.02.005
        • Dao M.C.
        • Everard A.
        • Aron-Wisnewsky J.
        • Sokolovska N.
        • Prifti E.
        • Verger E.O.
        • et al.
        Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology.
        Gut. 2015; 65: 426-436https://doi.org/10.1136/gutjnl-2014-308778
        • Everard A.
        • Belzer C.
        • Geurts L.
        • Ouwerkerk J.P.
        • Druart C.
        • Bindels L.B.
        • et al.
        Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.
        Proc Natl Acad Sci. 2013; 110: 9066-9071https://doi.org/10.1073/pnas.1219451110
        • Plovier H.
        • Everard A.
        • Druart C.
        • Depommier C.
        • Van Hul M.
        • Geurts L.
        • et al.
        A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice.
        Nat Med. 2017; 23: 107-113https://doi.org/10.1038/nm.4236
        • Ouwerkerk J.P.
        • Aalvink S.
        • Belzer C.
        • De Vos W.M.
        Preparation and preservation of viable Akkermansia muciniphila cells for therapeutic interventions.
        Benefic Microbes. 2017; 8: 163-169https://doi.org/10.3920/BM2016.0096
        • Anhê F.F.
        • Roy D.
        • Pilon G.
        • Dudonné S.
        • Matamoros S.
        • Varin T.V.
        • et al.
        A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice.
        Gut. 2014; 64: 872-883https://doi.org/10.1136/gutjnl-2014-307142
        • Roopchand D.E.
        • Carmody R.N.
        • Kuhn P.
        • Moskal K.
        • Rojas-Silva P.
        • Turnbaugh P.J.
        • et al.
        Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome.
        Diabetes. 2015; 64: 2847-2858https://doi.org/10.2337/db14-1916
        • Caesar R.
        • Tremaroli V.
        • Kovatcheva-Datchary P.
        • Cani P.D.
        • Bäckhed F.
        Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling.
        Cell Metab. 2015; 22: 658-668https://doi.org/10.1016/j.cmet.2015.07.026
        • Jakobsdottir G.
        • Xu J.
        • Molin G.
        • Ahrné S.
        • Nyman M.
        High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects.
        PLoS ONE. 2013; 8e80476https://doi.org/10.1371/journal.pone.0080476
        • Derrien M.
        • Vaughan E.E.
        • Plugge C.M.
        • de Vos W.M.
        Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium.
        Int J Syst Evol Microbiol. 2004; 54: 1469-1476https://doi.org/10.1099/ijs.0.02873-0
        • Reunanen J.
        • Kainulainen V.
        • Huuskonen L.
        • Ottman N.
        • Belzer C.
        • Huhtinen H.
        • et al.
        Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of epithelial cell layer.
        Appl Environ Microbiol. 2015; https://doi.org/10.1128/AEM.04050-14
        • Derrien M.
        • Van Baarlen P.
        • Hooiveld G.
        • Norin E.
        • Müller M.
        • de Vos W.M.
        Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila.
        Front Microbiol. 2011; 2166https://doi.org/10.3389/fmicb.2011.00166
        • Ottman N.
        • Reunanen J.
        • Meijerink M.
        • Pietilä T.E.
        • Kainulainen V.
        • Klievink J.
        • et al.
        Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function.
        PloS One. 2017; 12e0173004https://doi.org/10.1371/journal.pone.0173004
        • Greer R.L.
        • Dong X.
        • Moraes A.C.F.
        • Zielke R.A.
        • Fernandes G.R.
        • Peremyslova E.
        • et al.
        Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism.
        Nat Commun. 2016; 713329https://doi.org/10.1038/ncomms13329
        • Dao M.C.
        • Everard A.
        • Clément K.
        • Cani P.D.
        Losing weight for a better health: role for the gut microbiota.
        Clin Nutr Exp. 2016; 6: 39-58https://doi.org/10.1016/j.yclnex.2015.12.001
        • Sonnenburg E.D.
        • Smits S.A.
        • Tikhonov M.
        • Higginbottom S.K.
        • Wingreen N.S.
        • Sonnenburg J.L.
        Diet-induced extinctions in the gut microbiota compound over generations.
        Nature. 2016; 529: 212-215https://doi.org/10.1038/nature16504
        • Kovatcheva-Datchary P.
        • Nilsson A.
        • Akrami R.
        • Lee Y.S.
        • De Vadder F.
        • Arora T.
        • et al.
        Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella.
        Cell Metab. 2015; 22: 971-982https://doi.org/10.1016/j.cmet.2015.10.001
        • Zeevi D.
        • Korem T.
        • Zmora N.
        • Israeli D.
        • Rothschild D.
        • Weinberger A.
        • et al.
        Personalized nutrition by prediction of glycemic responses.
        Cell. 2015; 163: 1079-1094https://doi.org/10.1016/j.cell.2015.11.001
        • Shoaie S.
        • Ghaffari P.
        • Kovatcheva-Datchary P.
        • Mardinoglu A.
        • Sen P.
        • Pujos-Guillot E.
        • et al.
        Quantifying diet-induced metabolic changes of the human gut microbiome.
        Cell Metab. 2015; 22: 320-331https://doi.org/10.1016/j.cmet.2015.07.001
        • David L.A.
        • Materna A.C.
        • Friedman J.
        • Campos-Baptista M.I.
        • Blackburn M.C.
        • Perrotta A.
        • et al.
        Host lifestyle affects human microbiota on daily timescales.
        Genome Biol. 2014; 15: R89https://doi.org/10.1186/gb-2014-15-7-r89
        • Nguyen N.T.
        • Varela J.E.
        Bariatric surgery for obesity and metabolic disorders: state of the art.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 160-169https://doi.org/10.1038/nrgastro.2016.170
        • Aron-Wisnewsky J.
        • Doré J.
        • Clement K.
        The importance of the gut microbiota after bariatric surgery.
        Nat Rev Gastroenterol Hepatol. 2012; 9: 590-598https://doi.org/10.1038/nrgastro.2012.161
        • Madsbad S.
        • Dirksen C.
        • Holst J.J.
        Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery.
        Lancet Diabetes Endocrinol. 2014; 2: 152-164https://doi.org/10.1016/s2213-8587(13)70218-3
        • Liou A.P.
        • Paziuk M.
        • Luevano J.-M.
        • Machineni S.
        • Turnbaugh P.J.
        • Kaplan L.M.
        Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity.
        Sci Transl Med. 2013; 5 (178ra41-178ra41)https://doi.org/10.1126/scitranslmed.3005687
        • Zhang H.
        • DiBaise J.K.
        • Zuccolo A.
        • Kudrna D.
        • Braidotti M.
        • Yu Y.
        • et al.
        Human gut microbiota in obesity and after gastric bypass.
        Proc Natl Acad Sci. 2009; 106: 2365-2370https://doi.org/10.1073/pnas.0812600106
        • Graessler J.
        • Qin Y.
        • Zhong H.
        • Zhang J.
        • Licinio J.
        • Wong M.-L.
        • et al.
        Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters.
        Pharmacogenomics J. 2012; 13: 514-522https://doi.org/10.1038/tpj.2012.43
        • Tremaroli V.
        • Karlsson F.
        • Werling M.
        • Ståhlman M.
        • Kovatcheva-Datchary P.
        • Olbers T.
        • et al.
        Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation.
        Cell Metab. 2015; 22: 228-238https://doi.org/10.1016/j.cmet.2015.07.009
        • Palleja A.
        • Kashani A.
        • Allin K.H.
        • Nielsen T.
        • Zhang C.
        • Li Y.
        • et al.
        Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota.
        Genome Med. 2016; 867https://doi.org/10.1186/s13073-016-0312-1
        • Kong L.-C.
        • Tap J.
        • Aron-Wisnewsky J.
        • Pelloux V.
        • Basdevant A.
        • Bouillot J.-L.
        • et al.
        Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes.
        Am J Clin Nutr. 2013; 98: 16-24https://doi.org/10.3945/ajcn.113.058743
        • Patrone V.
        • Vajana E.
        • Minuti A.
        • Callegari M.L.
        • Federico A.
        • Loguercio C.
        • et al.
        Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass.
        Front Microbiol. 2016; 7200https://doi.org/10.3389/fmicb.2016.00200
        • Furet J.-P.
        • Kong L.-C.
        • Tap J.
        • Poitou C.
        • Basdevant A.
        • Bouillot J.-L.
        • et al.
        Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers.
        Diabetes. 2010; 59: 3049-3057https://doi.org/10.2337/db10-0253
        • Damms-Machado A.
        • Mitra S.
        • Schollenberger A.E.
        • Kramer K.M.
        • Meile T.
        • Königsrainer A.
        • et al.
        Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption.
        Biomed Res Int. 2015; 2015: 1-12https://doi.org/10.1155/2015/806248
        • Aron-Wisnewsky J.
        • Clement K.
        The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity.
        Curr Atheroscler Rep. 2014; 16https://doi.org/10.1007/s11883-014-0454-9
        • Verger E.O.
        • Aron-Wisnewsky J.
        • Dao M.C.
        • Kayser B.D.
        • Oppert J.-M.
        • Bouillot J.-L.
        • et al.
        Micronutrient and protein deficiencies after gastric bypass and sleeve gastrectomy: a 1-year follow-up.
        Obes Surg. 2015; 26: 785-796https://doi.org/10.1007/s11695-015-1803-7
        • Kohli R.
        • Bradley D.
        • Setchell K.D.
        • Eagon J.C.
        • Abumrad N.
        • Klein S.
        Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids.
        J Clin Endocrinol Metab. 2013; 98: E708-712https://doi.org/10.1210/jc.2012-3736
        • Ilhan Z.E.
        • DiBaise J.K.
        • Isern N.G.
        • Hoyt D.W.
        • Marcus A.K.
        • Kang D.-W.
        • et al.
        Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding.
        ISME J. 2017; 11: 2047-2058https://doi.org/10.1038/ismej.2017.71
        • Murphy R.
        • Tsai P.
        • Jüllig M.
        • Liu A.
        • Plank L.
        • Booth M.
        Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission.
        Obes Surg. 2017; 27: 917-925https://doi.org/10.1007/s11695-016-2399-2
        • Albaugh V.L.
        • Flynn C.R.
        • Cai S.
        • Xiao Y.
        • Tamboli R.A.
        • Abumrad N.N.
        Early increases in bile acids post Roux-en-Y gastric bypass are driven by insulin-sensitizing, secondary bile acids.
        J Clin Endocrinol Metab. 2015; 100: E1225-1233https://doi.org/10.1210/jc.2015-2467
        • Patti M.-E.
        • Houten S.M.
        • Bianco A.C.
        • Bernier R.
        • Larsen P.R.
        • Holst J.J.
        • et al.
        Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism.
        Obes Silver Spring Md. 2009; 17: 1671-1677https://doi.org/10.1038/oby.2009.102
        • Ahmad N.N.
        • Pfalzer A.
        • Kaplan L.M.
        Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity.
        Int J Obes. 2013; 2005 (37:1553–9)https://doi.org/10.1038/ijo.2013.38
        • Ryan K.K.
        • Tremaroli V.
        • Clemmensen C.
        • Kovatcheva-Datchary P.
        • Myronovych A.
        • Karns R.
        • et al.
        FXR is a molecular target for the effects of vertical sleeve gastrectomy.
        Nature. 2014; 509: 183-188https://doi.org/10.1038/nature13135
        • Kaska L.
        • Sledzinski T.
        • Chomiczewska A.
        • Dettlaff-Pokora A.
        • Swierczynski J.
        Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome.
        World J Gastroenterol. 2016; 22: 8698-8719https://doi.org/10.3748/wjg.v22.i39.8698
        • Cani P.D.
        • Van Hul M.
        Novel opportunities for next-generation probiotics targeting metabolic syndrome.
        Curr Opin Biotechnol. 2015; 32: 21-27https://doi.org/10.1016/j.copbio.2014.10.006
        • Park S.
        • Bae J.-H.
        Probiotics for weight loss: a systematic review and meta-analysis.
        Nutr Res. 2015; 35: 566-575https://doi.org/10.1016/j.nutres.2015.05.008
        • Delzenne N.M.
        • Neyrinck A.M.
        • Bäckhed F.
        • Cani P.D.
        Targeting gut microbiota in obesity: effects of prebiotics and probiotics.
        Nat Rev Endocrinol. 2011; 7: 639-646https://doi.org/10.1038/nrendo.2011.126
        • Sanchez M.
        • Darimont C.
        • Panahi S.
        • Drapeau V.
        • Marette A.
        • Taylor V.H.
        • et al.
        Effects of a diet-based weight-reducing program with probiotic supplementation on satiety efficiency, eating behaviour traits, and psychosocial behaviours in obese individuals.
        Forum Nutr. 2017; 9https://doi.org/10.3390/nu9030284
        • Sanchez M.
        • Darimont C.
        • Drapeau V.
        • Emady-Azar S.
        • Lepage M.
        • Rezzonico E.
        • et al.
        Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women.
        Br J Nutr. 2014; 111: 1507-1519https://doi.org/10.1017/S0007114513003875
        • Madjd A.
        • Taylor M.A.
        • Mousavi N.
        • Delavari A.
        • Malekzadeh R.
        • Macdonald I.A.
        • et al.
        Comparison of the effect of daily consumption of probiotic compared with low-fat conventional yogurt on weight loss in healthy obese women following an energy-restricted diet: a randomized controlled trial.
        Am J Clin Nutr. 2016; 103: 323-329https://doi.org/10.3945/ajcn.115.120170
        • Woodard G.A.
        • Encarnacion B.
        • Downey J.R.
        • Peraza J.
        • Chong K.
        • Hernandez-Boussard T.
        • et al.
        Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial.
        J Gastrointest Surg Off J Soc Surg Aliment Tract. 2009; 13: 1198-1204https://doi.org/10.1007/s11605-009-0891-x
        • Chen J.J.
        • Wang R.
        • Li X.
        • Wang R.
        Bifidobacterium longum supplementation improved high-fat-fed-induced metabolic syndrome and promoted intestinal Reg I gene expression.
        Exp Biol Med. 2011; 236: 823-831https://doi.org/10.1258/ebm.2011.010399
        • Sherf-Dagan S.
        • Zelber-Sagi S.
        • Zilberman-Schapira G.
        • Webb M.
        • Buch A.
        • Keidar A.
        • et al.
        Probiotics administration following sleeve gastrectomy surgery: a randomized double-blind trial.
        Int J Obes (Lond). 2005; 2017https://doi.org/10.1038/ijo.2017.210
        • Backhed F.
        • Ding H.
        • Wang T.
        • Hooper L.V.
        • Koh G.Y.
        • Nagy A.
        • et al.
        The gut microbiota as an environmental factor that regulates fat storage.
        Proc Natl Acad Sci. 2004; 101: 15718-15723https://doi.org/10.1073/pnas.0407076101
        • Bäckhed F.
        • Manchester J.K.
        • Semenkovich C.F.
        • Gordon J.I.
        Mechanisms underlying the resistance to diet-induced obesity in germ-free mice.
        Proc Natl Acad Sci. 2007; 104: 979-984https://doi.org/10.1073/pnas.0605374104
        • Khoruts A.
        • Sadowsky M.J.
        Understanding the mechanisms of faecal microbiota transplantation.
        Nat Rev Gastroenterol Hepatol. 2016; 13: 508-516https://doi.org/10.1038/nrgastro.2016.98
        • Singh R.
        • Nieuwdorp M.
        • ten Berge I.J.M.
        • Bemelman F.J.
        • Geerlings S.E.
        The potential beneficial role of faecal microbiota transplantation in diseases other than Clostridium difficile infection.
        Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2014; 20: 1119-1125https://doi.org/10.1111/1469-0691.12799
        • Vrieze A.
        • Van Nood E.
        • Holleman F.
        • Salojärvi J.
        • Kootte R.S.
        • Bartelsman J.F.W.M.
        • et al.
        Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome.
        Gastroenterology. 2012; 143: 913-916.e7https://doi.org/10.1053/j.gastro.2012.06.031
        • Li S.S.
        • Zhu A.
        • Benes V.
        • Costea P.I.
        • Hercog R.
        • Hildebrand F.
        • et al.
        Durable coexistence of donor and recipient strains after fecal microbiota transplantation.
        Science. 2016; 352: 586-589https://doi.org/10.1126/science.aad8852
        • Marotz C.A.
        • Zarrinpar A.
        Treating obesity and metabolic syndrome with fecal microbiota transplantation.
        Yale J Biol Med. 2016; 89: 383-388
        • van Nood E.
        • Speelman P.
        • Nieuwdorp M.
        • Keller J.
        Fecal microbiota transplantation: facts and controversies.
        Curr Opin Gastroenterol. 2014; 30: 34-39https://doi.org/10.1097/MOG.0000000000000024
        • Bojanova D.P.
        • Bordenstein S.R.
        Fecal transplants: what is being transferred?.
        PLoS Biol. 2016; 14e1002503https://doi.org/10.1371/journal.pbio.1002503
        • Falony G.
        • Joossens M.
        • Vieira-Silva S.
        • Wang J.
        • Darzi Y.
        • Faust K.
        • et al.
        Population-level analysis of gut microbiome variation.
        Science. 2016; 352: 560-564https://doi.org/10.1126/science.aad3503
        • Pfeiffer J.K.
        • Virgin H.W.
        Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine.
        Science. 2016; 351https://doi.org/10.1126/science.aad5872
        • Magalhaes I.
        • Pingris K.
        • Poitou C.
        • Bessoles S.
        • Venteclef N.
        • Kiaf B.
        • et al.
        Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients.
        J Clin Invest. 2015; 125: 1752-1762https://doi.org/10.1172/JCI78941