Advertisement

Cannabinoids and cancer pain: A new hope or a false dawn?

      Highlights

      • The endocannabinoid system plays a major role in the regulation of key physiological processes.
      • Effects are mediated by system-specific CB1 and CB2 receptors and via other non-specific receptors.
      • Pre-clinical research exists demonstrating the modulatory effect of cannabinoids on pain processing.
      • To date the evidence for the use of cannabinoids clinically for analgesia has been disappointing.
      • Further work is warranted to determine the efficacy of selective CB1 receptor and/or CB2 receptor agonists as analgesic agents.

      Abstract

      The endocannabinoid system is involved in many areas of physiological function and homeostasis. Cannabinoid receptors are expressed in the peripheral and central nervous system and on immune cells, all areas ideally suited to modulation of pain processing. There are a wealth of preclinical data in a number of acute, chronic, neuropathic and cancer pain models that have demonstrated a potent analgesic potential for cannabinoids, especially in patients with cancer. However, although there are some positive results in pain of cancer patients, the clinical evidence for cannabinoids as analgesics has not been convincing and their use can only be weakly recommended. The efficacy of cannabinoids seems to have been ‘lost in translation’ which may in part be related to using extracts of herbal cannabis rather than targeted selective full agonists at the cannabinoid CB1 and CB2 receptors.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brown M.
        • Farquhar-Smith P.
        Pain in cancer survivors; filling in the gaps.
        Br J Anaesth. 2017; 119: 723-736https://doi.org/10.1093/bja/aex202
        • Chandra Suman
        • Lata Hemant
        • ElSohly M.A.
        Cannabis sativa L. - botany and biotechnology.
        Springer International Publishing, Cham2017https://doi.org/10.1007/978-3-319-54564-6
        • Baron E.P.
        Comprehensive review of medicinal marijuana, cannabinoids, and therapeutic implications in medicine and headache: what a long strange trip it's been.
        Headache. 2015; 55: 885-916https://doi.org/10.1111/head.12570
        • Culpeper N.
        The complete herbal. London.
        1653
        • Pisanti S.
        • Bifulco M.
        Modern history of medical cannabis: from widespread use to prohibitionism and back.
        Trends Pharmacol Sci. 2017; 38: 195-198https://doi.org/10.1016/j.tips.2016.12.002
        • Kalant H.
        Medical use of cannabis: history and current status.
        Pain Res Manag. 2011; 6: 80-91
        • Abrams D.I.
        • Guzman M.
        Cannabis in cancer care.
        Clin Pharmacol Ther. 2015; 97: 575-586https://doi.org/10.1002/cpt.108
        • Booth J.K.
        • Page J.E.
        • Bohlmann J.
        Terpene synthases from Cannabis sativa.
        PLoS One. 2017; 12: 1-20https://doi.org/10.1371/journal.pone.0173911
        • ElSohly M.A.
        • Slade D.
        Chemical constituents of marijuana: the complex mixture of natural cannabinoids.
        Life Sci. 2005; 78: 539-548https://doi.org/10.1016/j.lfs.2005.09.011
        • Brenneisen R.
        Chemistry and analysis of phytocannabinoids and other cannabis constituents. Marijuana and the cannabinoids.
        Humana Press, Totowa, NJ2007: 17-49https://doi.org/10.1007/978-1-59259-947-9_2
        • Sawler J.
        • Stout J.M.
        • Gardner K.M.
        • Hudson D.
        • Vidmar J.
        • Butler L.
        • et al.
        The genetic structure of marijuana and hemp.
        PLoS One. 2015; 10: 1-9https://doi.org/10.1371/journal.pone.0133292
        • Di Marzo V.
        • Bifulco M.
        • De Petrocellis L.
        The endocannabinoid system and its therapeutic exploitation.
        Nat Rev Drug Discov. 2004; 3: 771-784https://doi.org/10.1038/nrd1495
        • Lau B.K.
        • Cota D.
        • Cristino L.
        • Borgland S.L.
        Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits.
        Neuropharmacology. 2017; 124: 38-51https://doi.org/10.1016/j.neuropharm.2017.05.033
        • El Manira A.
        • Kyriakatos A.
        The role of endocannabinoid signaling in motor control.
        Phys Ther. 2010; 25: 230-238https://doi.org/10.1152/physiol.00007.2010
        • du Plessis S.S.
        • Agarwal A.
        • Syriac A.
        Marijuana, phytocannabinoids, the endocannabinoid system, and male fertility.
        J Assist Reprod Genet. 2015; 32: 1575-1588https://doi.org/10.1007/s10815-015-0553-8
        • Farquhar-Smith W.P.
        • Egertová M.
        • Bradbury E.J.
        • McMahon S.B.
        • Rice A.S.C.
        • Elphick M.R.
        Cannabinoid CB1 receptor expression in rat spinal cord.
        Mol Cell Neurosci. 2000; 15: 510-521https://doi.org/10.1006/mcne.2000.0844
        • Pertwee R.G.
        The pharmacology of cannabinoid receptors and their ligands: an overview.
        Int J Obes. 2006; 30: S13-8https://doi.org/10.1038/sj.ijo.0803272
        • Pertwee R.G.
        Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.
        Philos Trans R Soc B Biol Sci. 2012; 367: 3353-3363https://doi.org/10.1098/rstb.2011.0381
        • Shao Z.
        • Yin J.
        • Chapman K.
        • Grzemska M.
        • Clark L.
        • Wang J.
        • et al.
        High-resolution crystal structure of the human CB1 cannabinoid receptor.
        Nature. 2016; 540: 602-606https://doi.org/10.1038/nature20613
        • Mackie K.
        Cannabinoid receptors: where they are and what they do.
        J Neuroendocrinol. 2008; 20: 10-14https://doi.org/10.1111/j.1365-2826.2008.01671.x
        • Howlett A.C.
        International Union of Pharmacology. XXVII. Classification of cannabinoid receptors.
        Pharmacol Rev. 2002; 54: 161-202https://doi.org/10.1124/pr.54.2.161
        • Kano M.
        • Ohno-Shosaku T.
        • Hashimotodani Y.
        • Uchigashima M.
        • Watanabe M.
        Endocannabinoid-mediated control of synaptic transmission.
        Physiol Rev. 2009; 89: 309-380https://doi.org/10.1152/physrev.00019.2008
        • Eisenstein T.K.
        • Meissler J.J.
        Effects of cannabinoids on T-cell function and resistance to infection.
        J NeuroImmune Pharmacol. 2015; 10: 204-216https://doi.org/10.1007/s11481-015-9603-3
        • Palmer S.L.
        • Thakur G.A.
        • Makriyannis A.
        Cannabinergic ligands.
        Chem Phys Lipids. 2002; 121: 3-19https://doi.org/10.1016/S0009-3084(02)00143-3
        • Devinsky O.
        • Cilio M.R.
        • Cross H.
        • Fernandez-Ruiz J.
        • French J.
        • Hill C.
        • et al.
        Epilepsy and other neuropsychiatric disorders.
        Epilepsia. 2014; 55: 791-802https://doi.org/10.1111/epi.12631.Cannabidiol
        • Pertwee R.G.
        Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists.
        Curr Med Chem. 2010; 17: 1360-1381https://doi.org/10.2174/092986710790980050
        • Pertwee R.G.
        The diverse CB 1 and CB 2 receptor pharmacology of three plant cannabinoids: Δ 9-tetrahydrocannabinol, cannabidiol and Δ 9-tetrahydrocannabivarin.
        Br J Pharmacol. 2008; 153: 199-215https://doi.org/10.1038/sj.bjp.0707442
        • Izzo A.A.
        • Borrelli F.
        • Capasso R.
        • Di Marzo V.
        • Mechoulam R.
        Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb.
        Trends Pharmacol Sci. 2009; 30: 515-527https://doi.org/10.1016/j.tips.2009.07.006
        • Ryberg E.
        • Larsson N.
        • Sjögren S.
        • Hjorth S.
        • Hermansson N.O.
        • Leonova J.
        • et al.
        The orphan receptor GPR55 is a novel cannabinoid receptor.
        Br J Pharmacol. 2007; 152: 1092-1101https://doi.org/10.1038/sj.bjp.0707460
        • Farquhar-Smith W.P.
        • Rice A.S.C.
        A novel neuroimmune mechanism in cannabinoid-mediated attenuation of nerve growth factor-induced hyperalgesia.
        Anesthesiology. 2003; 99: 1391-1401
        • Lambert D.M.
        • Di Marzo V.
        The palmitoylethanolamide and oleamide enigmas: are these two fatty acid amides cannabimimetic?.
        Curr Med Chem. 1999; 6: 757-773
        • Messeguer A.
        • Planells-Cases R.
        • Ferrer-Montiel A.
        Physiology and pharmacology of the vanilloid receptor.
        Curr Neuropharmacol. 2006; 4: 1-15https://doi.org/10.2174/157015906775202995
        • Di Marzo V.
        • De Petrocellis L.
        Why do cannabinoid receptors have more than one endogenous ligand?.
        Philos Trans R Soc B Biol Sci. 2012; 367: 3216-3228https://doi.org/10.1098/rstb.2011.0382
        • Malek N.
        • Starowicz K.
        Dual-acting compounds targeting endocannabinoid and Endovanilloid systems—a novel treatment option for chronic pain management.
        Front Pharmacol. 2016; 7https://doi.org/10.3389/fphar.2016.00257
        • O'Hearn S.
        • Diaz P.
        • Wan B.A.
        • De Angelis C.
        • Lao N.
        • Malek L.
        • et al.
        Modulating the endocannabinoid pathway as treatment for peripheral neuropathic pain: a selected review of preclinical studies.
        Ann Palliat Med. 2017; 6: S209-S214https://doi.org/10.21037/apm.2017.08.04
        • Cravatt B.F.
        • Lichtman A.H.
        The endogenous cannabinoid system and its role in nociceptive behavior.
        J Neurobiol. 2004; 61: 149-160https://doi.org/10.1002/neu.20080
        • Farquhar-Smith W.P.
        • Egertová M.
        • Bradbury E.J.
        • McMahon S.B.
        • Rice A.S.
        • Elphick M.R.
        Cannabinoid CB(1) receptor expression in rat spinal cord.
        Mol Cell Neurosci. 2000; 15: 510-521https://doi.org/10.1006/mcne.2000.0844
        • Lötsch J.
        • Weyer-Menkhoff I.
        • Tegeder I.
        Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings.
        Eur J Pain. 2017; https://doi.org/10.1002/ejp.1148
        • Kehl L.J.
        • Hamamoto D.T.
        • Wacnik P.W.
        • Croft D.L.
        • Norsted B.D.
        • Wilcox G.L.
        • et al.
        A cannabinoid agonist differentially attenuates deep tissue hyperalgesia in animal models of cancer and inflammatory muscle pain.
        Pain. 2003; 103: 175-186
        • Khasabova I.A.
        • Gielissen J.
        • Chandiramani A.
        • Harding-Rose C.
        • Odeh D.A.
        • Simone D.A.
        • et al.
        CB1 and CB2 receptor agonists promote analgesia through synergy in a murine model of tumor pain.
        Behav Pharmacol. 2011; 22: 607-616https://doi.org/10.1097/FBP.0b013e3283474a6d
        • Marino S.
        • Idris A.I.
        Emerging therapeutic targets in cancer induced bone disease: a focus on the peripheral type 2 cannabinoid receptor.
        Pharmacol Res. 2017; 119: 391-403https://doi.org/10.1016/j.phrs.2017.02.023
        • Elikottil J.
        • Gupta P.
        • Gupta K.
        The analgesic potential of cannabinoids.
        J Opioid Manag. 2009; 5: 341-357
        • Bushlin I.
        • Rozenfeld R.
        • Devi L.A.
        Cannabinoid–opioid interactions during neuropathic pain and analgesia.
        Curr Opin Pharmacol. 2010; 10: 80-86https://doi.org/10.1016/j.coph.2009.09.009
        • Atwood B.K.
        • Straiker A.
        • Mackie K.
        CB₂: therapeutic target-in-waiting.
        Prog Neuro-Psychopharmacol Biol Psychiatry. 2012; 38: 16-20https://doi.org/10.1016/j.pnpbp.2011.12.001
        • Bow E.W.
        • Rimoldi J.M.
        The structure–function relationships of classical cannabinoids: CB1/CB2 modulation.
        Perspect Medicin Chem. 2016; 8PMC.S32171https://doi.org/10.4137/PMC.S32171
        • Fine P.G.
        • Rosenfeld M.J.
        Cannabinoids for neuropathic pain.
        Curr Pain Headache Rep. 2014; 18451https://doi.org/10.1007/s11916-014-0451-2
        • Starowicz K.
        • Malek N.
        • Przewlocka B.
        Cannabinoid receptors and pain.
        Wiley Interdiscip Rev Membr Transp Signal. 2013; 2: 121-132https://doi.org/10.1002/wmts.83
        • Kinsey S.G.
        • Mahadevan A.
        • Zhao B.
        • Sun H.
        • Naidu P.S.
        • Razdan R.K.
        • et al.
        The CB2 cannabinoid receptor-selective agonist O-3223 reduces pain and inflammation without apparent cannabinoid behavioral effects.
        Neuropharmacology. 2011; 60: 244-251https://doi.org/10.1016/j.neuropharm.2010.09.004
        • Yao B.B.
        • Hsieh G.C.
        • Frost J.M.
        • Fan Y.
        • Garrison T.R.
        • Daza A.V.
        • et al.
        In vitro and in vivo characterization of A-796260: a selective cannabinoid CB2 receptor agonist exhibiting analgesic activity in rodent pain models.
        Br J Pharmacol. 2008; 153: 390-401https://doi.org/10.1038/sj.bjp.0707568
        • Poupon L.
        • Kerckhove N.
        • Vein J.
        • Lamoine S.
        • Authier N.
        • Busserolles J.
        • et al.
        Minimizing chemotherapy-induced peripheral neuropathy: preclinical and clinical development of new perspectives.
        Expert Opin Drug Saf. 2015; 14: 1269-1282https://doi.org/10.1517/14740338.2015.1056777
        • Khasabova I.A.
        • Khasabov S.
        • Paz J.
        • Harding-Rose C.
        • Simone D.A.
        • Seybold V.S.
        Cannabinoid Type-1 receptor reduces pain and neurotoxicity produced by chemotherapy.
        J Neurosci. 2012; 32: 7091-7101https://doi.org/10.1523/JNEUROSCI.0403-12.2012
        • Rahn E.J.
        • Zvonok A.M.
        • Thakur G.A.
        • Khanolkar A.D.
        • Makriyannis A.
        • Hohmann A.G.
        Selective activation of cannabinoid CB2 receptors suppresses neuropathic nociception induced by treatment with the chemotherapeutic agent paclitaxel in rats.
        J Pharmacol Exp Ther. 2008; 327: 584-591https://doi.org/10.1124/jpet.108.141994
        • Deng L.
        • Cornett B.L.
        • Mackie K.
        • Hohmann A.G.
        CB1 knockout mice unveil sustained CB2-mediated Antiallodynic effects of the mixed CB1/CB2 agonist CP55,940 in a mouse model of paclitaxel-induced neuropathic pain.
        Mol Pharmacol. 2015; 88: 64-74https://doi.org/10.1124/mol.115.098483
        • Deng L.
        • Guindon J.
        • Cornett B.L.
        • Makriyannis A.
        • Mackie K.
        • Hohmann A.G.
        Chronic cannabinoid receptor 2 activation reverses paclitaxel neuropathy without tolerance or cannabinoid receptor 1–dependent withdrawal.
        Biol Psychiatry. 2015; 77: 475-487https://doi.org/10.1016/j.biopsych.2014.04.009
        • Guerrero A.V.
        • Quang P.
        • Dekker N.
        • Jordan R.C.K.
        • Schmidt B.L.
        Peripheral cannabinoids attenuate carcinoma-induced nociception in mice.
        Neurosci Lett. 2008; 433: 77-81https://doi.org/10.1016/j.neulet.2007.12.053
        • Potenzieri C.
        • Harding-Rose C.
        • Simone D.A.
        The cannabinoid receptor agonist, WIN 55, 212-2, attenuates tumor-evoked hyperalgesia through peripheral mechanisms.
        Brain Res. 2008; 1215: 69-75https://doi.org/10.1016/j.brainres.2008.03.063
        • Uhelski M.L.
        • Cain D.M.
        • Harding-Rose C.
        • Simone D.A.
        The non-selective cannabinoid receptor agonist WIN 55,212-2 attenuates responses of C-fiber nociceptors in a murine model of cancer pain.
        Neuroscience. 2013; 247: 84-94https://doi.org/10.1016/j.neuroscience.2013.05.003
        • Khasabova I.A.
        • Khasabov S.G.
        • Harding-Rose C.
        • Coicou L.G.
        • Seybold B.A.
        • Lindberg A.E.
        • et al.
        A decrease in anandamide signaling contributes to the maintenance of cutaneous mechanical hyperalgesia in a model of bone cancer pain.
        J Neurosci. 2008; 28: 11141-11152https://doi.org/10.1523/JNEUROSCI.2847-08.2008
        • Meng H.
        • Johnston B.
        • Englesakis M.
        • Moulin D.E.
        • Bhatia A.
        Selective cannabinoids for chronic neuropathic pain.
        Anesth Analg. 2017; 125: 1638-1652https://doi.org/10.1213/ANE.0000000000002110
        • Whiting P.F.
        • Wolff R.F.
        • Deshpande S.
        • Di Nisio M.
        • Duffy S.
        • Hernandez A.V.
        • et al.
        Cannabinoids for medical use.
        JAMA. 2015; 313: 2456https://doi.org/10.1001/jama.2015.6358
        • Portenoy R.K.
        • Ganae-Motan E.D.
        • Allende S.
        • Yanagihara R.
        • Shaiova L.
        • Weinstein S.
        • et al.
        Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, graded-dose trial.
        J Pain. 2012; 13: 438-449https://doi.org/10.1016/j.jpain.2012.01.003
        • Johnson J.R.
        • Burnell-Nugent M.
        • Lossignol D.
        • Ganae-Motan E.D.
        • Potts R.
        • Fallon M.T.
        Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain.
        J Pain Symptom Manag. 2010; 39: 167-179https://doi.org/10.1016/j.jpainsymman.2009.06.008
        • Lynch M.E.
        • Cesar-Rittenberg P.
        • Hohmann A.G.
        A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain.
        J Pain Symptom Manag. 2014; 47: 166-173https://doi.org/10.1016/j.jpainsymman.2013.02.018
        • Lichtman A.H.
        • Lux E.A.
        • McQuade R.
        • Rossetti S.
        • Sanchez R.
        • Sun W.
        • et al.
        Results of a double-blind, randomized, placebo-controlled study of nabiximols oromucosal spray as adjunctive therapy in advanced cancer patients with chronic uncontrolled pain.
        J Pain Symptom Manag. 2017; https://doi.org/10.1016/j.jpainsymman.2017.09.001
        • Fallon M.T.
        • Albert Lux E.
        • McQuade R.
        • Rossetti S.
        • Sanchez R.
        • Sun W.
        • et al.
        Sativex oromucosal spray as adjunctive therapy in advanced cancer patients with chronic pain unalleviated by optimized opioid therapy: two double-blind, randomized, placebo-controlled phase 3 studies.
        Br J Pain. 2017; 11: 119-133https://doi.org/10.1177/2049463717710042
        • Moore A.
        • Derry S.
        • Eccleston C.
        • Kalso E.
        Expect analgesic failure; pursue analgesic success.
        BMJ. 2013; 346: f2690https://doi.org/10.1136/bmj.f2690
        • Tramèr M.R.
        • Carroll D.
        • Campbell F.A.
        • Reynolds D.J.
        • Moore R.A.
        • HJ McQuay
        Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review.
        BMJ. 2001; 323: 16-21
        • Smith L.A.
        • Azariah F.
        • VTC Lavender
        • Stoner N.S.
        • Bettiol S.
        Cannabinoids for nausea and vomiting in adults with cancer receiving chemotherapy.
        Cochrane Database Syst Rev. 2015; CD009464https://doi.org/10.1002/14651858.CD009464.pub2
        • Strasser F.
        • Luftner D.
        • Possinger K.
        • Ernst G.
        • Ruhstaller T.
        • et al.
        Comparison of orally administered cannabis extract and delta-9-tetrahydrocannabinol in treating patients with cancer-related anorexia-cachexia syndrome: a multicenter, phase III, randomized, double-blind, placebo-controlled clinical trial from the Cannabis-In-Cachexia-Study-Group.
        J Clin Oncol. 2006; 24: 3394-3400https://doi.org/10.1200/JCO.2005.05.1847
        • Lutge E.E.
        • Gray A.
        • Siegfried N.
        The medical use of cannabis for reducing morbidity and mortality in patients with HIV/AIDS.
        Cochrane Database Syst Rev. 2013; CD005175https://doi.org/10.1002/14651858.CD005175.pub3
        • Soderstrom K.
        • Soliman E.
        • Van Dross R.
        Cannabinoids modulate neuronal activity and cancer by CB1 and CB2 receptor-independent mechanisms.
        Front Pharmacol. 2017; 8: 1-28https://doi.org/10.3389/fphar.2017.00720
        • Pandey R.
        • Hegde V.L.
        • Nagarkatti M.
        • Nagarkatti P.S.
        • Carolina S.
        Targeting cannabinoid receptors as a novel approach in the treatment of graft-versus-host disease: evidence from an experimental murine model.
        338. 2011: 819-828https://doi.org/10.1124/jpet.111.182717.tion
        • Yeshurun M.
        • Shpilberg O.
        • Herscovici C.
        • Shargian L.
        • Dreyer J.
        • Peck A.
        • et al.
        Cannabidiol for the prevention of graft-versus-host-disease after allogeneic hematopoietic cell transplantation: results of a phase II study.
        Biol Blood Marrow Transplant. 2015; 21: 1770-1775https://doi.org/10.1016/j.bbmt.2015.05.018
        • Ladin D.A.
        • Soliman E.
        • Griffin L.
        • Van Dross R.
        Preclinical and clinical assessment of cannabinoids as anti-cancer agents.
        Front Pharmacol. 2016; 7: 1-18https://doi.org/10.3389/fphar.2016.00361
        • Velasco G.
        • Sánchez C.
        • Guzmán M.
        Anticancer mechanisms of cannabinoids.
        Curr Oncol. 2016; 23: S23-32https://doi.org/10.3747/co.23.3080