Advertisement

The role of gut microbiota in Clostridium difficile infection

  • Author Footnotes
    1 1st Department of Medicine, Laikon Hospital, 17 Agiou Thoma street, Athens 11527 Greece.
    Michael Samarkos
    Correspondence
    Corresponding author at: Medical School, National and Kapodistrian University of Athens, Greece.
    Footnotes
    1 1st Department of Medicine, Laikon Hospital, 17 Agiou Thoma street, Athens 11527 Greece.
    Affiliations
    1st Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Greece
    Search for articles by this author
  • Elpida Mastrogianni
    Affiliations
    1st Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Greece
    Search for articles by this author
  • Olga Kampouropoulou
    Affiliations
    1st Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Greece
    Search for articles by this author
  • Author Footnotes
    1 1st Department of Medicine, Laikon Hospital, 17 Agiou Thoma street, Athens 11527 Greece.
Published:February 07, 2018DOI:https://doi.org/10.1016/j.ejim.2018.02.006

      Highlights

      • C. difficile colonization is characterized by decreased gut microbiota diversity.
      • C. difficile infection by might be driven by the presence of certain microbial taxa.
      • Faecal microbiota transplantation is the most effective therapy for CDI.

      Abstract

      Clostridium difficile infection has emerged as a major health problem. Because it is a spore-forming microorganism, C. difficile is difficult to eradicate and recurrences of the infection are frequent. The strong association of CDI with prior use of antibiotics led to the recognition that disturbances in the gut microbiota apparently plays a central role in CDI. Except for antibiotics, several other risk factors for CDI have been recognised, such as advanced age and use of proton pump inhibitors. The common characteristic of these factors is that they are associated with changes in the composition of gut microbiota. Data from human studies have shown that the presence of C. difficile, either as a colonizer or as a pathogen, is associated with reduced microbiota diversity. C. difficile infection per se seems to be associated with changes in the representation of specific microbial populations (e.g. taxa) which either may act protectively against C. difficile colonization of the gut or may increase susceptibility for C. difficile infection. Therapeutic gut microbiota manipulation can be achieved by faecal microbiota transplantation, which is highly effective for the treatment of CDI.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lessa F.C.
        • Mu Y.
        • Bamberg W.M.
        • Beldavs Z.G.
        • Dumyati G.K.
        • Dunn J.R.
        • et al.
        Burden of Clostridium difficile infection in the United States.
        N Engl J Med. 2015; 372: 825-834
        • Magill S.S.
        • Edwards J.R.
        • Bamberg W.
        • Beldavs Z.G.
        • Dumyati G.
        • Kainer M.A.
        • et al.
        Multistate point-prevalence survey of health care-associated infections.
        N Engl J Med. 2014; 370: 1198-1208
        • Gerding D.N.
        • Young V.B.
        Clostridium difficile infection.
        in: Bennett J.E. Dolin R. Blaser M.J. Mandell, Douglas, and Bennett's principles and practice of infectious diseases. 8th ed. Elsevier Saunders, Philadelphia, PA2015: 2744-2756
        • Oughton M.T.
        • Loo V.G.
        • Dendukuri N.
        • Fenn S.
        • Libman M.D.
        Hand hygiene with soap and water is superior to alcohol rub and antiseptic wipes for removal of Clostridium difficile.
        Infect Control Hosp Epidemiol. 2009; 30: 939-944
        • Paredes-Sabja D.
        • Shen A.
        • Sorg J.A.
        Clostridium difficile spore biology: sporulation, germination, and spore structural proteins.
        Trends Microbiol. 2014; 22: 406-416
        • Hensgens M.P.
        • Keessen E.C.
        • Squire M.M.
        • Riley T.V.
        • Koene M.G.
        • de Boer E.
        • et al.
        Clostridium difficile infection in the community: a zoonotic disease?.
        Clin Microbiol Infect. 2012; 18: 635-645
        • IOT Hall
        E. Intestinal flora in newborn infants with a description of a new pathogenic anaerobe, Bacillus difficilis.
        Am J Dis Child. 1935; 49: 390-402
        • Larson H.E.
        • Price A.B.
        • Honour P.
        • Borriello S.P.
        Clostridium difficile and the aetiology of pseudomembranous colitis.
        Lancet. 1978; 1: 1063-1066
        • Bartlett J.G.
        • Onderdonk A.B.
        • Cisneros R.L.
        • Kasper D.L.
        Clindamycin-associated colitis due to a toxin-producing species of clostridium in hamsters.
        J Infect Dis. 1977; 136: 701-705
        • Viscidi R.
        • Willey S.
        • Bartlett J.G.
        Isolation rates and toxigenic potential of Clostridium difficile isolates from various patient populations.
        Gastroenterology. 1981; 81: 5-9
        • Hensgens M.P.
        • Dekkers O.M.
        • Demeulemeester A.
        • Buiting A.G.
        • Bloembergen P.
        • van Benthem B.H.
        • et al.
        Diarrhoea in general practice: when should a Clostridium difficile infection be considered? Results of a nested case-control study.
        Clin Microbiol Infect. 2014; 20: O1067-74
        • Kuntz J.L.
        • Chrischilles E.A.
        • Pendergast J.F.
        • Herwaldt L.A.
        • Polgreen P.M.
        Incidence of and risk factors for community-associated Clostridium difficile infection: a nested case-control study.
        BMC Infect Dis. 2011; 11: 194
        • Chitnis A.S.
        • Holzbauer S.M.
        • Belflower R.M.
        • Winston L.G.
        • Bamberg W.M.
        • Lyons C.
        • et al.
        Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011.
        JAMA Intern Med. 2013; 173: 1359-1367
        • Sorg J.A.
        • Sonenshein A.L.
        Bile salts and glycine as cogerminants for Clostridium difficile spores.
        J Bacteriol. 2008; 190: 2505-2512
        • Janoir C.
        • Pechine S.
        • Grosdidier C.
        • Collignon A.
        Cwp84, a surface-associated protein of Clostridium difficile, is a cysteine protease with degrading activity on extracellular matrix proteins.
        J Bacteriol. 2007; 189: 7174-7180
        • Awad M.M.
        • Johanesen P.A.
        • Carter G.P.
        • Rose E.
        • Lyras D.
        Clostridium difficile virulence factors: insights into an anaerobic spore-forming pathogen.
        Gut Microbes. 2014; 5: 579-593
        • von Eichel-Streiber C.
        • Laufenberg-Feldmann R.
        • Sartingen S.
        • Schulze J.
        • Sauerborn M.
        Cloning of Clostridium difficile toxin B gene and demonstration of high N-terminal homology between toxin a and B.
        Med Microbiol Immunol. 1990; 179: 271-279
        • LaFrance M.E.
        • Farrow M.A.
        • Chandrasekaran R.
        • Sheng J.
        • Rubin D.H.
        • Lacy D.B.
        Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity.
        Proc Natl Acad Sci U S A. 2015; 112: 7073-7078
        • Shen A.
        Clostridium difficile toxins: mediators of inflammation.
        J Innate Immun. 2012; 4: 149-158
        • Human Microbiome Project C
        Structure, function and diversity of the healthy human microbiome.
        Nature. 2012; 486: 207-214
        • Li K.
        • Bihan M.
        • Yooseph S.
        • Methe B.A.
        Analyses of the microbial diversity across the human microbiome.
        PLoS One. 2012; 7e32118
        • Hollister E.B.
        • Gao C.
        • Versalovic J.
        Compositional and functional features of the gastrointestinal microbiome and their effects on human health.
        Gastroenterology. 2014; 146: 1449-1458
        • Arumugam M.
        • Raes J.
        • Pelletier E.
        • Le Paslier D.
        • Yamada T.
        • Mende D.R.
        • et al.
        Enterotypes of the human gut microbiome.
        Nature. 2011; 473: 174-180
        • Loo V.G.
        • Bourgault A.M.
        • Poirier L.
        • Lamothe F.
        • Michaud S.
        • Turgeon N.
        • et al.
        Host and pathogen factors for Clostridium difficile infection and colonization.
        N Engl J Med. 2011; 365: 1693-1703
        • Claesson M.J.
        • Cusack S.
        • O'Sullivan O.
        • Greene-Diniz R.
        • de Weerd H.
        • Flannery E.
        • et al.
        Composition, variability, and temporal stability of the intestinal microbiota of the elderly.
        Proc Natl Acad Sci U S A. 2011; 108: 4586-4591
        • Rea M.C.
        • O'Sullivan O.
        • Shanahan F.
        • O'Toole P.W.
        • Stanton C.
        • Ross R.P.
        • et al.
        Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota.
        J Clin Microbiol. 2012; 50: 867-875
        • Rodriguez C.
        • Taminiau B.
        • Korsak N.
        • Avesani V.
        • Van Broeck J.
        • Brach P.
        • et al.
        Longitudinal survey of Clostridium difficile presence and gut microbiota composition in a Belgian nursing home.
        BMC Microbiol. 2016; 16: 229
        • Derrien M.
        • Belzer C.
        • de Vos W.M.
        Akkermansia muciniphila and its role in regulating host functions.
        Microb Pathog. 2017; 106: 171-181
        • Deshpande A.
        • Pasupuleti V.
        • Thota P.
        • Pant C.
        • Rolston D.D.
        • Sferra T.J.
        • et al.
        Community-associated Clostridium difficile infection and antibiotics: a meta-analysis.
        J Antimicrob Chemother. 2013; 68: 1951-1961
        • Brown K.A.
        • Khanafer N.
        • Daneman N.
        • Fisman D.N.
        Meta-analysis of antibiotics and the risk of community-associated Clostridium difficile infection.
        Antimicrob Agents Chemother. 2013; 57: 2326-2332
        • Slimings C.
        • Riley T.V.
        Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis.
        J Antimicrob Chemother. 2014; 69: 881-891
        • Jernberg C.
        • Lofmark S.
        • Edlund C.
        • Jansson J.K.
        Long-term ecological impacts of antibiotic administration on the human intestinal microbiota.
        ISME J. 2007; 1: 56-66
        • Lange K.
        • Buerger M.
        • Stallmach A.
        • Bruns T.
        Effects of antibiotics on gut microbiota.
        Dig Dis. 2016; 34: 260-268
        • Dethlefsen L.
        • Huse S.
        • Sogin M.L.
        • Relman D.A.
        The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing.
        PLoS Biol. 2008; 6e280
        • Mangin I.
        • Leveque C.
        • Magne F.
        • Suau A.
        • Pochart P.
        Long-term changes in human colonic Bifidobacterium populations induced by a 5-day oral amoxicillin-clavulanic acid treatment.
        PLoS One. 2012; 7e50257
        • Fukuda S.
        • Toh H.
        • Hase K.
        • Oshima K.
        • Nakanishi Y.
        • Yoshimura K.
        • et al.
        Bifidobacteria can protect from enteropathogenic infection through production of acetate.
        Nature. 2011; 469: 543-547
        • Ubeda C.
        • Taur Y.
        • Jenq R.R.
        • Equinda M.J.
        • Son T.
        • Samstein M.
        • et al.
        Vancomycin-resistant enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans.
        J Clin Invest. 2010; 120: 4332-4341
        • Britton R.A.
        • Young V.B.
        Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance.
        Trends Microbiol. 2012; 20: 313-319
        • Schubert A.M.
        • Sinani H.
        • Schloss P.D.
        Antibiotic-Induced Alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile.
        MBio. 2015; 6e00974
        • Deneve C.
        • Delomenie C.
        • Barc M.C.
        • Collignon A.
        • Janoir C.
        Antibiotics involved in Clostridium difficile-associated disease increase colonization factor gene expression.
        J Med Microbiol. 2008; 57: 732-738
        • Jackson M.A.
        • Goodrich J.K.
        • Maxan M.E.
        • Freedberg D.E.
        • Abrams J.A.
        • Poole A.C.
        • et al.
        Proton pump inhibitors alter the composition of the gut microbiota.
        Gut. 2016; 65: 749-756
        • Imhann F.
        • Bonder M.J.
        • Vich Vila A.
        • Fu J.
        • Mujagic Z.
        • Vork L.
        • et al.
        Proton pump inhibitors affect the gut microbiome.
        Gut. 2016; 65: 740-748
        • Clooney A.G.
        • Bernstein C.N.
        • Leslie W.D.
        • Vagianos K.
        • Sargent M.
        • Laserna-Mendieta E.J.
        • et al.
        A comparison of the gut microbiome between long-term users and non-users of proton pump inhibitors.
        Aliment Pharmacol Ther. 2016; 43: 974-984
        • Vincent C.
        • Miller M.A.
        • Edens T.J.
        • Mehrotra S.
        • Dewar K.
        • Manges A.R.
        Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection.
        Microbiome. 2016; 4: 12
        • Chang J.Y.
        • Antonopoulos D.A.
        • Kalra A.
        • Tonelli A.
        • Khalife W.T.
        • Schmidt T.M.
        • et al.
        Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea.
        J Infect Dis. 2008; 197: 435-438
        • Weingarden A.R.
        • Chen C.
        • Bobr A.
        • Yao D.
        • Lu Y.
        • Nelson V.M.
        • et al.
        Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection.
        Am J Physiol Gastrointest Liver Physiol. 2014; 306: G310-9
        • Antharam V.C.
        • Li E.C.
        • Ishmael A.
        • Sharma A.
        • Mai V.
        • Rand K.H.
        • et al.
        Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea.
        J Clin Microbiol. 2013; 51: 2884-2892
        • Schubert A.M.
        • Rogers M.A.
        • Ring C.
        • Mogle J.
        • Petrosino J.P.
        • Young V.B.
        • et al.
        Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls.
        MBio. 2014; 5e01021-14
        • Skraban J.
        • Dzeroski S.
        • Zenko B.
        • Mongus D.
        • Gangl S.
        • Rupnik M.
        Gut microbiota patterns associated with colonization of different Clostridium difficile ribotypes.
        PLoS One. 2013; 8e58005
        • Louh I.K.
        • Greendyke W.G.
        • Hermann E.A.
        • Davidson K.W.
        • Falzon L.
        • Vawdrey D.K.
        • et al.
        Clostridium difficile infection in acute care hospitals: systematic review and best practices for prevention.
        Infect Control Hosp Epidemiol. 2017; 38: 476-482
        • Feazel L.M.
        • Malhotra A.
        • Perencevich E.N.
        • Kaboli P.
        • Diekema D.J.
        • Schweizer M.L.
        Effect of antibiotic stewardship programmes on Clostridium difficile incidence: a systematic review and meta-analysis.
        J Antimicrob Chemother. 2014; 69: 1748-1754
        • Khoruts A.
        • Sadowsky M.J.
        Understanding the mechanisms of faecal microbiota transplantation.
        Nat Rev Gastroenterol Hepatol. 2016; 13: 508-516
        • Khanna S.
        Microbiota replacement therapies: innovation in gastrointestinal care.
        Clin Pharmacol Ther. 2018; 103: 102-111
        • Weingarden A.
        • Gonzalez A.
        • Vazquez-Baeza Y.
        • Weiss S.
        • Humphry G.
        • Berg-Lyons D.
        • et al.
        Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection.
        Microbiome. 2015; 3: 10
        • Broecker F.
        • Klumpp J.
        • Schuppler M.
        • Russo G.
        • Biedermann L.
        • Hombach M.
        • et al.
        Long-term changes of bacterial and viral compositions in the intestine of a recovered Clostridium difficile patient after fecal microbiota transplantation.
        Cold Spring Harb. Mol. Case Stud. 2016; 2a000448
        • Staley C.
        • Kelly C.R.
        • Brandt L.J.
        • Khoruts A.
        • Sadowsky M.J.
        Complete microbiota engraftment is not essential for recovery from recurrent Clostridium difficile infection following fecal microbiota transplantation.
        MBio. 2016; 7
        • Breukink E.
        • de Kruijff B.
        The lantibiotic nisin, a special case or not?.
        Biochim Biophys Acta. 1999; 1462: 223-234
        • Rea M.C.
        • Sit C.S.
        • Clayton E.
        • O'Connor P.M.
        • Whittal R.M.
        • Zheng J.
        • et al.
        Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile.
        Proc Natl Acad Sci U S A. 2010; 107: 9352-9357
        • Sorg J.A.
        • Sonenshein A.L.
        Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid.
        J Bacteriol. 2010; 192: 4983-4990
        • Schwan A.
        • Sjolin S.
        • Trottestam U.
        • Aronsson B.
        Relapsing Clostridium difficile enterocolitis cured by rectal infusion of homologous faeces.
        Lancet. 1983; 2: 845
        • van Nood E.
        • Vrieze A.
        • Nieuwdorp M.
        • Fuentes S.
        • Zoetendal E.G.
        • de Vos W.M.
        • et al.
        Duodenal infusion of donor feces for recurrent Clostridium difficile.
        N Engl J Med. 2013; 368: 407-415
        • Quraishi M.N.
        • Widlak M.
        • Bhala N.
        • Moore D.
        • Price M.
        • Sharma N.
        • et al.
        Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection.
        Aliment Pharmacol Ther. 2017; 46: 479-493
        • Cammarota G.
        • Ianiro G.
        • Gasbarrini A.
        Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review.
        J Clin Gastroenterol. 2014; 48: 693-702
        • Drekonja D.
        • Reich J.
        • Gezahegn S.
        • Greer N.
        • Shaukat A.
        • MacDonald R.
        • et al.
        Fecal microbiota transplantation for Clostridium difficile infection: a systematic review.
        Ann Intern Med. 2015; 162: 630-638
        • Wang S.
        • Xu M.
        • Wang W.
        • Cao X.
        • Piao M.
        • Khan S.
        • et al.
        Systematic review: adverse events of fecal microbiota transplantation.
        PLoS One. 2016; 11e0161174
        • Baxter M.
        • Ahmad T.
        • Colville A.
        • Sheridan R.
        Fatal aspiration pneumonia as a complication of fecal microbiota transplant.
        Clin Infect Dis. 2015; 61: 136-137
        • Alang N.
        • Kelly C.R.
        Weight gain after fecal microbiota transplantation.
        Open Forum Infect Dis. 2015; 2ofv004
        • Parkes G.C.
        • Sanderson J.D.
        • Whelan K.
        The mechanisms and efficacy of probiotics in the prevention of Clostridium difficile-associated diarrhoea.
        Lancet Infect Dis. 2009; 9: 237-244
        • Goldenberg J.Z.
        • Yap C.
        • Lytvyn L.
        • Lo C.K.
        • Beardsley J.
        • Mertz D.
        • et al.
        Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children.
        Cochrane Database Syst Rev. 2017; 12CD006095
        • Aagaard K.
        • Luna Ruth Ann
        • Versalovic J.
        The human microbiome of local body sites and their unique biology.
        in: Bennett J.E. Dolin R. Blaser M.J. Mandell, Douglas & Bennett's principles and practice of infectious diseases. 8th ed. Elsevier Saunders, Philadelphia, PA2015: 11-18