Advertisement

The adipose organ and multiple myeloma: Impact of adipokines on tumor growth and potential sites for therapeutic intervention

  • Alessandro Allegra
    Correspondence
    Corresponding author at: Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy.
    Affiliations
    Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
    Search for articles by this author
  • Vanessa Innao
    Affiliations
    Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
    Search for articles by this author
  • Demetrio Gerace
    Affiliations
    Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
    Search for articles by this author
  • Andrea Gaetano Allegra
    Affiliations
    Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
    Search for articles by this author
  • Doriana Vaddinelli
    Affiliations
    Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
    Search for articles by this author
  • Oriana Bianco
    Affiliations
    Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
    Search for articles by this author
  • Caterina Musolino
    Affiliations
    Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
    Search for articles by this author

      Highlights

      • The adipose tissue is now identified as an organ with endocrine and metabolic roles
      • The adipocytes may have a role in multiple myeloma progression and relapse
      • Modifying adipose tissue could be a successful multiple myeloma therapy

      Abstract

      In addition to its capacity to store lipids the adipose tissue is now identified as a real organ with both endocrine and metabolic roles.
      Preclinical results indicate that modifying adipose tissue and bone marrow adipose tissue (BMAT) could be a successful multiple myeloma (MM) therapy. BMAT interrelates with bone marrow cells and other immune cells, and may influence MM disease progression. The BM adipocytes may have a role in MM progression, bone homing, chemoresistance, and relapse, due to local endocrine, paracrine, or metabolic factors. BM adipocytes isolated from MM subjects have been shown to increase myeloma growth in vitro and may preserve cells from chemotherapy-induced apoptosis. By producing free fatty acids and emitting signaling molecules such as growth factors and adipokines, BM adipocytes are both an energy font and an endocrine signaling factory.
      This review should suggest future research approaches toward developing novel treatments to target MM by targeting BMAT and its products.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ligibel J.A.
        • Alfano C.M.
        • Courneya K.S.
        • Demark-Wahnefried W.
        • Burger R.A.
        • et al.
        American Society of Clinical Oncology position statement on obesity and cancer.
        J Clin Oncol. 2014; 32: 3568-3574
        • Lauby-Secretan B.
        • Scoccianti C.
        • Loomis D.
        • et al.
        Body fatness and cancer–viewpoint of the IARC working group.
        N Engl J Med. 2016; 375: 794-798
        • Renehan A.G.
        • Tyson M.
        • Egger M.
        • Heller R.F.
        • Zwahlen M.
        Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies.
        Lancet. 2008; 371: 569-578
        • Wright M.E.
        • Chang S.C.
        • Schatzkin A.
        • et al.
        Prospective study of adiposity and weight change in relation to prostate cancer incidence and mortality.
        Cancer. 2007; 109: 675-684
        • Donin N.M.
        • Pantuck A.
        • Klopfer¨ P.
        • et al.
        Body mass index and survival in a prospective randomized trial of localized high-risk renal cell carcinoma.
        Cancer Epidemiol Biomarkers Prev. 2016; 25: 1326-1332
        • Larsson S.C.
        • Wolk A.
        Body mass index and risk of non-Hodgkin's and Hodgkin's lymphoma: a meta-analysis of prospective studies.
        Eur J Cancer. 2011; 47: 2422-2430
        • Larsson S.C.
        • Wolk A.
        Overweight and obesity and incidence of leukemia: a meta-analysis of cohort studies.
        Int J Cancer. 2008; 122: 1418-1421
        • Weiss L.
        • Melchardt T.
        • Habringer S.
        • et al.
        Increased body mass index is associated with improved overall survival in diffuse large B-cell lymphoma.
        Ann Oncol. 2014; 25: 171-176
        • Hwang H.S.
        • Yoon D.H.
        • Suh C.
        • et al.
        Body mass index as a prognostic factor in Asian patients treated with chemoimmunotherapy for diffuse large B cell lymphoma, not otherwise specified.
        Ann Hematol. 2015; 94: 1655-1665
        • Leo Q.J.
        • Ollberding N.J.
        • Wilkens L.R.
        • et al.
        Obesity and non-Hodgkin lymphoma survival in an ethnically diverse population: the multiethnic cohort study.
        Cancer Causes Control. 2014; 25: 1449-1459
        • Rodriguez-Abreu D.
        • Bordoni A.
        • Zucca E.
        Epidemiology of hematological malignancies.
        Ann Oncol. 2007; 18: 3-8
        • Wenzell C.M.
        • Gallagher E.M.
        • Earl M.
        • et al.
        Outcomes in obese and overweight acute myeloid leukemia patients receiving chemotherapy dosed according to actual body weight.
        Am J Hematol. 2013; 88: 906-909
        • Tavitian S.
        • Denis A.
        • Vergez F.
        • et al.
        Impact of obesity in favorable-risk AML patients receiving in-tensive chemotherapy.
        Am J Hematol. 2016; 91: 193-198
        • Castillo J.J.
        • Mulkey F.
        • Geyer S.
        • et al.
        Relationship between obesity and clinical outcome in adults with acute myeloid leukemia: a pooled analysis from four CALGB (alliance) clinical trials.
        Am J Hematol. 2016; 91: 199-204
        • Krok-Schoen J.L.
        • Fisher J.L.
        • Stephens J.A.
        • et al.
        Incidence and survival of hematological cancers among adults ages ≥75 years.
        Cancer Med. 2018 Apr 13; https://doi.org/10.1002/cam4.1461
        • Teras L.R.
        • Kitahara C.M.
        • Birmann B.M.
        • Hartge P.A.
        • Wang S.S.
        • Robien K.
        • et al.
        Body size and multiple myeloma mortality: a pooled analysis of 20 prospective studies.
        Br J Haematol. 2014; 166: 667-676
        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2016.
        CA Cancer J Clin. 2016; 66: 7-30
        • Wallin A.
        • Larsson S.C.
        Body mass index and risk of multiple myeloma: a meta-analysis of pro-spective studies.
        Eur J Cancer. 2011; 47: 1606-1615
        • Calle E.E.
        • Rodriguez C.
        • Walker-Thurmond K.
        • Thun M.J.
        • Calle E.E.
        • Rodriguez C.
        • et al.
        Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults.
        N Engl J Med. 2003; 348: 1625-1638
        • Samanic C.
        • Gridley G.
        • Chow W.H.
        • et al.
        Obesity and cancer risk among white and black United States veterans.
        Cancer Causes Control. 2004; 15: 35-43
        • Rosen E.D.
        • Spiegelman B.M.
        What we talk about when we talk about fat.
        Cell. 2014; 156: 20-44
        • Harms M.
        • Seale P.
        Brown and beige fat: development, function and therapeutic potential.
        Nat Med. 2013; 19: 1252-1263
        • Goodwin P.J.
        • Stambolic V.
        Impact of the obesity epidemic on cancer.
        Annu Rev Med. 2015; 66: 281-296
        • Lecka-Czernik B.
        Marrow fat metabolism is linked to the systemic energy metabolism.
        Bone. 2012; 50: 534-539
        • Poloni A.
        • Maurizi G.
        • Serrani F.
        • Mancini S.
        • Zingaretti M.C.
        • Frontini A.
        • et al.
        Molecular and functional characterization of human bone marrow adipocytes.
        Exp Hematol. 2013; 41: 558-566
        • Lecka-Czernik B.
        • Stechschulte L.A.
        Bone and fat: a relationship of different shades.
        Arch Biochem Biophys. 2014; 561: 124-129
        • Cawthorn W.P.
        • Scheller E.L.
        • Learman B.S.
        • Parlee S.D.
        • Simon B.R.
        • Mori H.
        • et al.
        Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction.
        Cell Metab. 2014; 20: 368-375
        • Xuan D.
        • Han Q.
        • Tu Q.
        • Zhang L.
        • Yu L.
        • Murry D.
        • et al.
        Epigenetic modulation in periodontitis: interaction of adiponectin and JMJD3-IRF4 axis in macro-phages.
        J Cell Physiol. 2016; 231: 1090-1096
        • Adler B.J.
        • Kaushansky K.
        • Rubin C.T.
        Obesity-driven disruption of haematopoiesis and the bone marrow niche.
        Nat Rev Endocrinol. 2014; 10: 737-748https://doi.org/10.1038/nrendo.2014.169
        • Doucette C.R.
        • Horowitz M.C.
        • Berry R.
        • MacDougald O.A.
        • Anunciado-Koza R.
        • Koza R.A.
        • et al.
        A high fat diet increases bone marrow adipose tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6J mice.
        J Cell Physiol. 2015; 230: 2032-2037
        • Nieman K.M.
        • Romero I.L.
        • Van Houten B.
        • Lengyel E.
        Adipose tissue and adipocytes support tumorigenesis and metastasis.
        Biochim Biophys Acta. 2013; 1831: 1533-1541
        • Fan Y.
        • Gan Y.
        • Shen Y.
        • Cai X.
        • Song Y.
        • Zhao F.
        • et al.
        Leptin signaling enhances cell invasion and promotes the metastasis of human pancreatic cancer via increasing MMP-13 production.
        Oncotarget. 2015; 6: 16120-16134
        • Trotter T.N.
        • Gibson J.T.
        • Sherpa T.L.
        • Gowda P.S.
        • D Yang Peker
        Adipocyte-lineage cells support growth and dissemination of multiple myeloma in bone.
        Am J Pathol. 2016; 186: 3054-3063
        • Calapai G.
        • Corica F.
        • Allegra A.
        • Corsonello A.
        • Sautebin L.
        • De Gregorio T.
        • et al.
        Effects of intra-cerebroventricular leptin administration on food intake, body weight gain and diencephalic nitric oxide synthase activity in the mouse.
        Br J Pharmacol. 1998; 125: 798-802
        • Münzberg H.
        • Morrison C.D.
        Structure, production and signaling of leptin.
        Metabolism. 2015; 64: 13-23
        • Pamuk G.E.
        • Demir M.
        • Harmandar F.
        • Yesil Y.
        • Turgut B.
        • Vural O.
        Leptin and resistin levels in serum of patients with hematologic malignancies: correlation with clinical characteristics.
        Exp Oncol. 2006; 28: 241-244
        • Reseland J.E.
        • Reppe S.
        • Olstad O.K.
        • Hjorth-Hansen H.
        • Brenne A.T.
        • Syversen U.
        • et al.
        Abnormal adipokine levels and leptin-induced changes in gene expression profiles in multiple myeloma.
        Eur J Haematol. 2009; 83: 460-470
        • Alexandrakis M.G.
        • Passam F.H.
        • Sfiridaki A.
        • Pappa C.A.
        • Moschandrea J.A.
        • Kandidakis E.
        • et al.
        Serum levels of leptin in multiple myeloma patients and its relation to angiogenic and inflammatory cytokines.
        Int J Biol Markers. 2004; 19: 52-57
        • Hofmann J.N.
        • Liao L.M.
        • Pollak M.N.
        • Wang Y.
        • Pfeiffer R.M.
        • Baris D.
        • et al.
        A prospective study of circulating adipokine levels and risk of multiple myeloma.
        Blood. 2012; 120: 4418-4420
        • Dalamaga M.
        • Karmaniolas K.
        • Panagiotou A.
        • Hsi A.
        • Chamberland J.
        • Dimas C.
        • et al.
        Low circulating adiponectin and resistin, but not leptin, levels are associated with multiple myeloma risk: a case-control study.
        Cancer Causes Control. 2009; 20: 193-199
        • Lang K.
        • Ratke J.
        Leptin and adiponectin: new players in the field of tumor cell and leukocyte migration.
        Cell Commun Signal. 2009; 7: 27
        • Nalabolu M.R.
        • Palasamudram K.
        • Jamil K.
        Adiponectin and leptin molecular actions and clinical significance in breast cancer.
        Int J Hematol Oncol Stem Cell Res. 2014; 8: 31-40
        • Corica F.
        • Allegra A.
        • Corsonello A.
        • Buemi M.
        • Calapai G.
        • Ruello A.
        • et al.
        Relationship between plasma leptin levels and the tumor necrosis factor-alpha system in obese subjects.
        Int J Obes Relat Metab Disord. 1999; 23: 355-360
        • Sharma D.
        • Saxena N.K.
        • Vertino P.M.
        • Anania F.A.
        Leptin promotes the proliferative response and invasiveness in human endometrial cancer cells by activating multiple signal-transduction pathways.
        Endocr Relat Cancer. 2006; 13: 629-640
        • Booth A.
        • Magnuson A.
        • Fouts J.
        • Foster M.
        Adipose tissue, obesity and adipokines: role in cancer promotion.
        Horm Mol Biol Clin Invest. 2015; 21: 57-74
        • Favreau F.
        • Menu E.
        • Gaublomme D.
        • Vanderkerken K.
        • Faict S.
        • Maes K.
        • et al.
        Leptin receptor antagonism of iNKT cell function: a novel strategy to combat multiple myeloma.
        Leukemia. 11 May 2017; https://doi.org/10.1038/leu.2017.146
        • Mullen M.
        • Gonzalez-Perez R.
        Leptin-induced JAK/STAT signaling and Cancer growth.
        Vaccine. 2016; 4https://doi.org/10.3390/vaccines4030026
        • Procaccini C.
        • De Rosa V.
        • Galgani M.
        • Carbone F.
        • Cassano S.
        • Greco D.
        • et al.
        Leptin-induced mTOR activation defines a specific molecular and transcriptional signature controlling CD4+ effector T cell responses.
        J Immunol. 2012; 189: 2941-2953
        • El-Masry O.
        • Al-Sakkaf K.
        • Brown B.
        • Dobson P.
        Differential crosstalk between the AMPK and PI3K/Akt pathways in breast cancer cells of differing genotypes: leptin inhibits the effectiveness of AMPK activation.
        Oncol Rep. 2015; 34: 1675-1680
        • Scherer P.E.
        • Williams S.
        • Fogliano M.
        • Baldini G.
        • Lodish H.F.
        A novel serum protein similar to C1q, produced exclusively in adipo-cytes.
        J Biol Chem. 1995; 270: 26746-26749
        • Pajvani U.B.
        • Du X.
        • Combs T.P.
        • Berg A.H.
        • Rajala M.W.
        • Schulthess T.
        • et al.
        Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin.
        Implications fpr metabolic regulation and bioactivity J Biol Chem. 2003; 278: 9073-9085
        • Kadowaki T.
        • Yamauchi T.
        Adiponectin and adiponectin recep-tors.
        Endocr Rev. 2005; 26: 439-451
        • Kim A.Y.
        • Lee Y.S.
        • Kim K.H.
        • Lee J.H.
        • Lee H.K.
        • Jang S.H.
        • et al.
        Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation.
        Mol Endocrinol. 2010; 24: 1441-1452
        • Barb D.
        • Williams C.J.
        • Neuwirth A.K.
        • Mantzoros C.S.
        Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence.
        Am J Clin Nutr. 2007; 86: s858-s866
        • Yamamoto Y.
        • Hirose H.
        • Saito I.
        • Tomita M.
        • Taniyama M.
        • Matsubara K.
        • et al.
        Correlation of the adipocyte-derived protein adiponectin with insulin resist-ance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population.
        Clin Sci (Lond). 2002; 103: 137-142
        • DiMascio L.
        • Voermans C.
        • Uqoezwa M.
        • Duncan A.
        • Lu D.
        • Wu J.
        • et al.
        Identification of adiponectin as a novel hemopoietic stem cell growth factor.
        J Immunol. 2007; 178: 3511-3520
        • Iversen P.O.
        • Wiig H.
        Tumor necrosis factor alpha and adiponectin in bone marrow interstitial fluid from patients with acute myeloid leukemia inhibit normal hematopoiesis.
        Clin Cancer Res. 2005; 11: 6793-6799
        • Crawford L.J.
        • Peake R.
        • Price S.
        • Morris T.C.
        • Irvine A.E.
        Adiponectin is produced by lymphocytes and is a negative regulator of granulopoiesis.
        J Leukoc Biol. 2010; 88: 807-811
        • Grote V.A.
        • Kaaks R.
        • Nieters A.
        • Tjonneland A.
        • Halkjaer J.
        • Overvad K.
        • et al.
        Inflammation marker and risk of pancreatic cancer: a nested case-control study within the EPIC cohort.
        Br J Cancer. 2012; 106: 1866-1874
        • An W.
        • Bai Y.
        • Deng S.X.
        • Gao J.
        • Ben Q.W.
        • Cai Q.C.
        • et al.
        Adiponectin levels in patients with colorectal cancer and adeno-ma: a meta-analysis.
        Eur J Cancer Prev. 2012; 21: 126-133
        • Dalamaga M.
        • Diakopoulos K.N.
        • Mantzoros C.S.
        The role of adiponectin in cancer: a review of current evidence.
        Endocr Rev. 2012; 33: 547-594
        • Fowler J.A.
        • Lwin S.T.
        • Drake M.T.
        • Edwards J.R.
        • Kyle R.A.
        • Mundy G.R.
        • et al.
        Host-derived adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated bone disease.
        Blood. 2011; 118: 5872-5882
        • Lauta V.M.
        A review of the cytokine network in multiple mye-Loma: diagnostic, prognostic, and therapeutic implications.
        Cancer. 2003; 97: 2440-2452
        • Ajuwon K.M.
        • Spurlock M.E.
        Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPAR-gamma2 expression in adipocytes.
        Am J Physiol Regul Integr Comp Physiol. 2005; 288R1220
        • Klein B.
        • Tarte K.
        • Jourdan M.
        • Mathouk K.
        • Moreaux J.
        • Jourdan E.
        • et al.
        Survival and proliferation factors of normal and malignant plasma cells.
        Int J Hematol. 2003; 78: 106-113
        • Dhodapkar M.V.
        Adipokines in MM: time to trim the fat.
        Blood. 2011; 118: 5716-5717
        • Medina E.A.
        • Oberheu K.
        • Polusani S.R.
        • Ortega V.
        • Velagaleti G.V.
        • Oyajobi B.O.
        PKA/AMPK signaling in relation to adiponectin's antiproliferative effect on multiple myeloma cells.
        Leukemia. 2014; 28: 2080-2089
        • Fain J.N.
        • Cheema P.S.
        • Bahouth S.W.
        • Hiler M.L.
        Resistin release by human adipose tis-sue explants in primary culture.
        Biochem Biophys Res Commun. 2003; 300: 674-678
        • Steppan C.M.
        • Bailey S.T.
        • Bhat S.
        • et al.
        The hormone resistin links obesity to diabetes.
        Nature. 2001; 409: 307-312
        • Kim H.J.
        • Lee Y.S.
        • Won E.H.
        • et al.
        Expression of resistin in the prostate and its stimulato-ry effect on prostate cancer cell proliferation.
        BJU Int. 2011; 108: E77-E83
        • Kuo C.H.
        • Chen K.F.
        • Chou S.H.
        • et al.
        Lung tumor-associated dendritic cell-derived resistin promoted cancer progression by increasing wolf-Hirschhorn syndrome can-didate 1/twist pathway.
        Carcinogenesis. 2013; 34: 2600-2609
        • Gao J.
        • Chang Chua C.
        • Chen Z.
        • et al.
        Resistin, an adipocytokine, offers protection against acute myocardial infarction.
        J Mol Cell Cardiol. 2007; 43: 601-609
        • Lu D.Y.
        • Chen J.H.
        • Tan T.W.
        • Huang C.Y.
        • Yeh W.L.
        • Hsu H.C.
        Resistin protects against 6-hydroxydopamine-induced cell death in dopaminergic-like MES23.5 cells.
        J Cell Physiol. 2013; 228: 563-571
        • Pang J.
        • Shi Q.
        • Liu Z.
        • He Jin
        • Liu H.
        • Lin P.
        • et al.
        Resistin induces multidrug resistance in myeloma by inhibiting cell death and upregulating ABC transporter expression.
        Haematologica. 2017; 102: 1273-1280
        • Berndt J.
        • Klöting N.
        • Kralisch S.
        • Kovacs P.
        • Fasshauer M.
        • Schön M.R.
        • et al.
        Plasma visfatin concentrations and fat depot-specific mRNA expression in humans.
        Diabetes. 2005; 54: 2911-2916
        • Grolla A.A.
        • Travelli C.
        • Genazzani A.A.
        • Sethi J.K.
        Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine.
        Br J Pharmacol. 2016; 173: 2182-2194
        • Chen W.
        • Dong G.
        • He S.
        • Xu T.
        • Wang X.
        • Liu N.
        • et al.
        Identification of benzothiophene amides as potent inhibitors of human nicotin-amide phosphoribosyltransferase.
        Bioorg Med Chem Lett. 2016; 26: 765-768
        • Fukuhara A.
        • Matsuda M.
        • Nishizawa M.
        • Segawa K.
        • Tanaka M.
        • Kishimoto K.
        • et al.
        Visfatin: a protein secreted by visceral fat that mimics the effects of insulin.
        Science. 2005; 307: 426-430
        • Venkateshaiah S.U.
        • Khan S.
        • Ling W.
        • Bam R.
        • Li X.
        • van Rhee F.
        • et al.
        NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity.
        Exp Hematol. 2013; 41: 547-557
        • Ferlin M.
        • Noraz N.
        • Hertogh C.
        • Brochier J.
        • Taylor N.
        • Klein B.
        Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway.
        Br J Haematol. 2000; 111: 626-634
        • Georgii-Hemming P.
        • Wiklund H.J.
        • Ljunggren O.
        • Nilsson K.
        Insulin-like growth factor I is a growth and survival factor in human multiple myeloma cell lines.
        Blood. 1996; 88: 2250-2258
        • Sprynski A.C.
        • Hose D.
        • Kassambara A.
        • Vincent L.
        • Jourdan M.
        • Rossi J.F.
        • et al.
        Insulin is a potent myeloma cell growth factor through insulin/IGF-1 hybrid receptor activation.
        Leukemia. 2010; 24: 1940-1950
        • Mitsiades C.S.
        • Mitsiades N.S.
        • McMullan C.J.
        • Poulaki V.
        • Shringarpure R.
        • Akiyama M.
        • et al.
        Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors.
        Cancer Cell. 2004; 5: 221-230
        • Jernberg-Wiklund H.
        • Nilsson K.
        Control of apoptosis in human multiple myeloma by insulin-like growth factor I (IGF-I).
        Adv Cancer Res. 2007; 97: 139-165
        • Yee D.
        Insulin-like growth factor receptor inhibitors: baby or the bathwater?.
        J Natl Cancer Inst. 2012; 104: 975-981
        • Standal T.
        • Borset M.
        • Lenhoff S.
        • Wisloff F.
        • Stordal B.
        • Sundan A.
        • et al.
        Serum insulinlike growth factor is not elevated in patients with multiple myeloma but is still a prognostic factor.
        Blood. 2002; 100: 3925-3929
        • Fain J.N.
        Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells.
        Vitam Horm. 2006; 74: 443-477
        • Trayhurn P.
        • Wood I.S.
        Adipokines: inflammation and the pleiotropic role of white adipose tissue.
        Br J Nutr. 2004; 92: 347-355
        • Trayhurn P.
        • Wang B.
        • Wood I.S.
        Hypoxia and the endocrine and signalling role of white adipose tissue.
        Arch Physiol Biochem. 2008; 114: 267-276
        • Chen Y.L.
        • Yan M.Y.
        • Chien S.Y.
        • et al.
        Sann-Joong-Kuey-Jian-tang inhibits hepatocellular carcinoma Hep-G2 cell proliferation by increasing TNF alpha, Caspase-8, caspase- 3 and Bax but by decreasing TCTP and Mcl-1 expression in vitro.
        Mol Med Rep. 2013; 7: 1487-1493
        • Roy P.
        • Mukherjee T.
        • Chatterjee B.
        • Vijayaragavan B.
        • Banoth B.
        • Basak S.
        Non-canonical NFκB mutations reinforce pro-survival TNF response in multiple myeloma through an autoregulatory RelB:p50 NFκB pathway.
        Oncogene. 2016; : 1-13
        • Neben K.
        • Mytilineos J.
        • Moehler T.M.
        • et al.
        Polymorphisms of the tumor necrosis factor-α gene promoter predict for outcome after thalidomide therapy in relapsed and refractory multiple myeloma.
        Blood. 2002; 100: 2263-2265
        • Rauert H.
        • Stuhmer T.
        • Bargou R.
        • Wajant H.
        • Siegmund D.
        TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms.
        Cell Death Dis. 2011; 2: 194
        • Jurisic V.
        • Colovic M.
        Correlation of sera TNF-alpha with percentage of bone marrow plasma cells, LDH, beta2-microglobulin, and clinical stage in multiple myeloma.
        Med Oncol. 2002; 19: 133-139
        • Wang X.S.
        • Shi Q.
        • Williams L.A.
        • et al.
        Longitudinal analysis of patient-reported symptoms post-autologous stem cell transplant and their relationship to inflammation in patients with multiple myeloma.
        Leuk Lymphoma. 2015; 56: 1335-1341
        • Latif T.
        • Chauhan N.
        • Khan R.
        • Moran A.
        • Usmani S.Z.
        Thalidomide and its analogues in the treatment of multiple myeloma.
        Exp Hematol Oncol. 2012; 1: 27
        • Schwartz B.
        • Yehuda-Shnaidman E.
        Putative role of adipose tissue in growth and metabolism of colon cancer cells.
        Front Oncol. 2014; 4: 164
        • Pérez-Hernández A.I.
        • Catalán V.
        • Gómez-Ambrosi J.
        • et al.
        Mechanisms linking excess adiposity and carcinogenesis promotion.
        Front Endocrinol (Lausanne). 2014; 5: 65
        • Sriuranpong V.
        • Park J.I.
        • Amornphimoltham P.
        • et al.
        Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system.
        Cancer Res. 2003; 63: 2948-2956
        • Bataille R.
        • Barlogie B.
        • Lu Z.Y.
        • Rossi J.F.
        • Lavabre-Bertrand T.
        • Beck T.
        • et al.
        Biologic effects of anti-interleukin-6 murine monoclonal antibody in advanced multiple myeloma.
        Blood. 1995; 86: 685-691
        • Kurzrock R.
        • Voorhees P.M.
        • Casper C.
        • Furman R.R.
        • Fayad L.
        • Lonial S.
        • et al.
        A phase I, open-label study of siltuximab, an anti-il-6 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma, multiple myeloma, or Castleman disease.
        Clin Cancer Res. 2013; 19: 3659-3670
        • Chen G.L.
        • Luo Y.
        • Eriksson D.
        • Meng X.
        • Qian C.
        • Bäuerle T.
        • et al.
        High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6.
        Oncotarget. 2016; 7: 26653-26669
        • Mantovani A.
        • Allavena P.
        • Sica A.
        • et al.
        Cancer-related inflammation.
        Nature. 2008; 454: 436-444
        • Divella R.
        • De Luca R.
        • Abbate I.
        • Naglieri E.
        • Daniele A.
        Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation.
        J Cancer. 2016; 7: 2346
      1. Monteiro R, Azevedo I: Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm https://doi.org/10.1155/2010/2896452010.

        • Amano S.U.
        • Cohen J.L.
        • Vangala P.
        • et al.
        Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation.
        Cell Metab. 2014; 162-171: 19
        • Cinti S.
        • Mitchell G.
        • Barbatelli G.
        • et al.
        Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans.
        J Lipid Res. 2005; 46: 2347-2355
        • Shapiro H.
        • Pecht T.
        • Shaco-Levy R.
        • et al.
        Adi-pose tissue foam cells are present in human obesity.
        J Clin Endocrinol Metab. 2013; 98: 1173-1181
        • Musolino C.
        • Allegra A.
        • Innao V.
        • Allegra A.G.
        • Pioggia G.
        • Gangemi S.
        Inflammatory and anti-inflammatory equilibrium, proliferative and Antiproliferative balance: the role of cytokines in multiple myeloma.
        Mediators Inflamm. 2017; 2017: 1852517
        • Noborio-Hatano K.
        • Kikuchi J.
        • Takatoku M.
        • Shimizu R.
        • Wada T.
        • Ueda M.
        • et al.
        Bortezomib overcomes cell-adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma.
        Oncogene. 2009; 28: 231-242
        • Shain K.H.
        • Yarde D.N.
        • Meads M.B.
        • Huang M.
        • Jove R.
        • Hazlehurst L.A.
        • et al.
        Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma Cell: implications for microenvironment influence on tumor survival and proliferation.
        Cancer Res. 2009; 69: 1009-1015
        • Bullwinkle E.M.
        • Parker M.D.
        • Bonan N.F.
        • Falkenberg L.G.
        • Davison S.P.
        • DeCicco-Skinner K.L.
        Adipocytes contribute to the growth and progression of multiple myeloma: unraveling obesity related differences in adipocyte signaling.
        Cancer Lett. 2016; https://doi.org/10.1016/j.canlet.2016.06.010
        • Imbesi S.
        • Musolino C.
        • Allegra A.
        • Saija A.
        • Morabito F.
        • Calapai G.
        • et al.
        Oxidative stress in oncohematologic diseases: an update.
        Expert Rev Hematol. 2013; 6: 317-325
        • Alonci A.
        • Cristani M.
        • Russo S.
        • Speciale A.
        • Penna G.
        • Spatari G.
        • et al.
        Increase of novel biomarkers for oxidative stress in patients with plasma cell disorders and in multiple myeloma patients with bone lesions.
        Inflamm Res. 2012; 61: 1063-1067
        • Esterbauer H.
        • Eckl P.
        • Ortner A.
        Possible mutagens derived from lipids and lipid precursors.
        Mutat Res. 1990; 238: 223-233https://doi.org/10.1016/0165-1110
        • Chalhoub N.
        • Baker S.J.
        PTEN and the PI3-kinase pathway in cancer.
        Annu Rev Pathol. 2009; 4: 127-150https://doi.org/10.1146/annurev.pathol.4.110807.092311
        • Martinez-Useros J.
        • Garcia-Foncillas J.
        Obesity and colorectal cancer: molecular features of adipose tissue.
        J Transl Med. 2016; 14: 21
        • Allegra A.
        • Penna G.
        • Alonci A.
        • Rizzo V.
        • Russo S.
        • Musolino C.
        Nanoparticles in oncology: the new theragnostic molecules.
        Anticancer Agents Med Chem. 2011; 11: 669-686
        • Lazar I.
        • Clement E.
        • Dauvillier S.
        • Milhas D.
        • Ducoux-Petit M.
        • LeGonidec S.
        • et al.
        Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and Cancer.
        Cancer Res. 2016; 76: 4051-4057
        • Thomou T.
        • Mori M.A.
        • Dreyfuss J.M.
        • Konishi M.
        • Sakaguchi M.
        • Wolfrum C.
        • et al.
        Adipose-derived circulating miRNAs regulate gene expression in other tissues.
        Nature. 2017; 542: 450-455
        • Allegra A.
        • Alonci A.
        • Campo S.
        • Penna G.
        • Petrungaro A.
        • Gerace D.
        • et al.
        Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review).
        Int J Oncol. 2012; 41: 1897-1912
        • Allegra A.
        • Innao V.
        • Gerace D.
        • Bianco O.
        • Musolino C.
        The metabolomic signature of hematologic malignancies.
        Leuk Res. 2016; 49: 22-35
        • Yang C.
        • Sudderth J.
        • Dang T.
        • Bachoo R.M.
        • Bachoo R.G.
        • McDonald J.G.
        • et al.
        Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling.
        Cancer Res. 2009; 69: 7986-7993
        • Whitaker-Menezes D.
        • Martinez-Outschoorn U.E.
        • Lin Z.
        • Ertel A.
        • Flomenberg N.
        • Witkiewicz A.K.
        • et al.
        Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts.
        Cell Cycle. 2011; 10: 1772-1783
        • Pérez de Heredia F.
        • Wood I.S.
        • Trayhurn P.
        Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes.
        Pflugers Arch. 2010; 459: 509-518
        • Nair S.
        • Branagan A.R.
        • Liu J.
        • Boddupalli C.S.
        • Mistry P.K.
        • Dhodapkar M.V.
        Clonal immunoglobulin against lysolipids in the origin of myeloma.
        N Engl J Med. 2016; 374: 555-561
        • Zou J.
        • Ma X.
        • Zhang G.
        • Shen L.
        • Zhou L.
        • Yu Y.
        • et al.
        Evaluation of the change in sphingolipids in the human multiple myeloma cell line U266 and gastric cancer cell line MGC-803 treated with arsenic trioxide.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2015; 1004: 98-107
        • Zub K.A.
        • Sousa M.M.
        • Sarno A.
        • Sharma A.
        • Demirovic A.
        • Rao S.
        • et al.
        Modulation of cell metabolic pathways and oxidative stress signaling con-tribute to acquired melphalan resistance in multiple myeloma cells.
        PLoS One. 2015; 10e0119857https://doi.org/10.1371/journal.pone.0119857
        • Nagata Y.
        • Ishizaki I.
        • Waki M.
        • Ide Y.
        • Hossen M.A.
        • Ohnishi K.
        • et al.
        Palmitic acid, verified by lipid profiling using secondary ion mass spectrometry, demonstrates anti-multiple myeloma activity.
        Leuk Res. 2015; 39: 638-645
        • Quartarone E.
        • Alonci A.
        • Allegra A.
        • Bellomo G.
        • Calabrò L.
        • D'Angelo A.
        • et al.
        Differential levels of soluble angiopoietin-2 and Tie-2 in patients with haematological malignancies.
        Eur J Haematol. 2006; 77: 480-485
        • Hefetz-Sela S.
        • Scherer P.E.
        Adipocytes: impact on tumor growth and potential sites for therapeutic intervention.
        Pharmacol Ther. 2013; 138: 197-210
        • Cao Y.
        Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases.
        Nat Rev Drug Discov. 2010; 9: 107-115
        • Vacca A.
        • Ribatti D.
        Bone marrow angiogenesis in multiple myeloma.
        Leukemia. 2006; 20: 193-199
        • Kessenbrock K.
        • Plaks V.
        • Werb Z.
        Matrix metalloproteinases: regulators of the tumor microenvironment.
        Cell. 2010; 141: 52-67
        • Vacca A.
        • Ribatti D.
        • Roccaro A.M.
        • Frigeri A.
        • Dammacco F.
        Bone marrow angiogenesis in patients with active multiple myeloma.
        Semin Oncol. 2001; 28: 543-550
        • Thompson M.A.
        • Kyle R.A.
        • LJ3rd Melton
        • Plevak M.F.
        • Rajkumar S.V.
        Effect of statins, smoking and obesity on progression of monoclonal gammopathy of undetermined significance: a case–control study.
        Haematologica. 2004; 89: 626-628
        • Birmann B.M.
        • Neuhouser M.L.
        • Rosner B.
        • Albanes D.
        • Buring J.E.
        • Giles G.G.
        • et al.
        Prediagnosis biomarkers of insulin-like growth factor-1, insulin, and interleukin-6 dysregulation and multiple myeloma risk in the multiple myeloma cohort consortium.
        Blood. 2012; 120: 4929-4937
        • Wang D.
        • Haile A.
        • Jones L.C.
        Dexamethasone-induced lipolysis increases the adverse effect of adipocytes on osteoblasts using cells derived from human mesenchymal stem cells.
        Bone. 2013; 53: 520-530
        • Kajimura D.
        • Lee H.W.
        • Riley K.J.
        • Arteaga-Solis E.
        • Ferron M.
        • Zhou B.
        • et al.
        Adiponectin regulates bone mass via opposite central and peripheral mechanisms through foxo1.
        Cell Metab. 2013; 17: 901-915
        • Beason T.S.
        • Chang S.H.
        • Sanfilippo K.M.
        • Luo S.
        • Colditz G.A.
        • Vij R.
        • et al.
        Influence of body mass index on survival in veterans with multiple myeloma.
        Oncologist. 2013; 18: 1074-1079
        • Sjostrom L.
        • Gummesson A.
        • Sjostrom C.D.
        • et al.
        Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish obese subjects study): a prospective, controlled intervention trial.
        Lancet Oncol. 2009; 10: 653-662
        • Jeohrer K.
        • Ploner C.
        • Thangavadivel S.
        • Wuggenig P.
        • Greil R.
        Adipocyte-derived players in hematologic tumors: useful novel targets?.
        Expert Opin Biol Ther. 2015; 15: 61-77
        • Gimble J.M.
        • Nuttall M.E.
        The relationship between adipose tissue and bone metabolism.
        Clin Biochem. 2012; 45: 874-879
        • Kasznicki J.
        • Sliwinska A.
        • Drzewoski J.
        Metformin in cancer prevention and therapy.
        Ann Transl Med. 2014; 2: 57https://doi.org/10.3978/j.issn.2305-5839. 2014.06.01
        • Yu W.
        • Cao D.D.
        • Li Q.B.
        • Mei H.L.
        • Hu Y.
        • Guo T.
        Adipocytes secreted leptin is a pro-tumor factor for survival of multiple myeloma under chemotherapy.
        Oncotarget. 2016; 7: 86075-86086