Advertisement

The added value of health indicators to mortality predictions in old age: A systematic review

  • Sasmita Kusumastuti
    Correspondence
    Corresponding author at: Section of Epidemiology, Department of Public Health, University of Copenhagen, Oster Farimagsgade 5, PO Box 2099, DK-1014 Copenhagen K, Denmark.
    Affiliations
    Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark

    Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
    Search for articles by this author
  • Maarten Pieter Rozing
    Affiliations
    Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark

    Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
    Search for articles by this author
  • Rikke Lund
    Affiliations
    Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark

    Section of Social Medicine, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
    Search for articles by this author
  • Erik Lykke Mortensen
    Affiliations
    Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark

    Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
    Search for articles by this author
  • Rudi G.J. Westendorp
    Affiliations
    Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark

    Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
    Search for articles by this author

      Highlights

      • Mortality prediction models are used in clinical decision making in old age.
      • The added value of health indicators to mortality predictions is not yet explored.
      • Age and sex contributed the most to mortality predictions in old age.
      • The added value of health indicators is likely to be limited.
      • The lack of validation samples made it difficult to assess their true value.

      Abstract

      Background

      Numerous risk prediction models use indicators of health to predict mortality in old age. The added value to mortality predictions based on demographic variables is unknown.

      Objective

      To evaluate the accuracy of health indicators in predicting all-cause mortality among individuals aged 50+ using area under receiver operating characteristic curve (AUC). Specifically, to assess the added value of health indicators relative to demographic variables.

      Methods

      We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. There were no restrictions on study designs, follow-up duration, language, or publication dates. We also examined the quality of studies using the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies.

      Results

      Out of 804 studies investigating all-cause mortality in older persons, 16 studies were eligible. In community-dwelling populations, the accuracy of demographic variables and health indicators combined ranged from AUC 0.71 to 0.82, indicating modest ability to predict mortality. Age contributed the most to mortality prediction (AUC 0.65 to 0.78) and compared to age and sex, the added values of genetics, physiology, functioning, mood, cognition, nutritional status, subjective health, disease, frailty, and lifestyle ranged from AUC 0.01 to 0.10. The lack of validation samples made it difficult to assess their true added value. Findings were similar in institutionalized populations. Heterogeneity of the studies prevented us from performing a meta-analysis.

      Conclusion

      Age and sex contributed the most to mortality predictions in old age while the added value of health indicators is likely to be limited.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moons K.G.M.
        • Royston P.
        • Vergouwe Y.
        • Grobbee D.E.
        • Altman D.G.
        Prognosis and prognostic research: what, why, and how?.
        BMJ. 2009; 338: b375https://doi.org/10.1136/bmj.b375
        • Moons K.G.M.
        • Altman D.G.
        • Vergouwe Y.
        • Royston P.
        Prognosis and prognostic research: application and impact of prognostic models in clinical practice.
        BMJ. 2009; 338: b606https://doi.org/10.1136/bmj.b606
        • Kirkwood T.B.L.
        Understanding the odd science of aging.
        Cell. 2005; 120: 437-447https://doi.org/10.1016/j.cell.2005.01.027
        • Finch C.
        • Kirkwood T.
        Chance, development, and aging.
        Oxford University Press, 2000
        • Yourman L.C.
        • Lee S.J.
        • Schonberg M.A.
        • Widera E.W.
        • Smith A.K.
        Prognostic indices for older adults.
        JAMA. 2012; 307: 182https://doi.org/10.1001/jama.2011.1966
        • Lee S.S.J.S.
        • Lindquist K.
        • Segal M.M.R.
        • Covinsky K.E.
        Development and validation of a prognostic index for 4-year mortality in older adults.
        JAMA. 2006; 295: 801-808https://doi.org/10.1001/jama.295.7.801
        • Clegg A.
        • Bates C.
        • Young J.
        • Ryan R.
        • Nichols L.
        Development and validation of an electronic frailty index using routine primary care electronic health record data.
        Age. 2016; 45: 353-360
        • Siontis G.C.M.
        • Tzoulaki I.
        • Ioannidis J.P.A.
        Predicting death.
        Arch Intern Med. 2011; 171: 1721https://doi.org/10.1001/archinternmed.2011.334
        • Pijpers E.
        • Ferreira I.
        • Stehouwer C.D.A.
        • Nieuwenhuijzen Kruseman A.C.
        • Kruseman A.C.N.
        • Hogan D.B.
        The frailty dilemma. Review of the predictive accuracy of major frailty scores.
        Eur J Intern Med. 2012; 23: 118-123https://doi.org/10.1016/j.ejim.2011.09.003
        • Henderson R.
        • Keiding N.
        Individual survival time prediction using statistical models.
        J Med Ethics. 2005; 31: 703-706
        • Ganna A.
        • Ingelsson E.
        • Oortwijn W.
        • Nelissen E.
        • Adamini S.
        • den van Heuvel S.
        • et al.
        5 year mortality predictors in 498,103 UK Biobank participants: a prospective population-based study.
        Lancet (Lond Engl). 2015; 386: 533-540https://doi.org/10.1016/S0140-6736(15)60175-1
        • Kusumastuti S.
        • Gerds T.A.
        • Lund R.
        • Mortensen E.L.
        • Westendorp R.G.J.
        Discrimination ability of comorbidity, frailty, and subjective health to predict mortality in community-dwelling older people: population based prospective cohort study.
        Eur J Intern Med. 2017; https://doi.org/10.1016/j.ejim.2017.05.016
        • Collins G.S.
        • Moons K.G.M.
        Comparing risk prediction models.
        BMJ. 2012; 344
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS Med. 2009; 6: e1000097https://doi.org/10.1371/journal.pmed.1000097
        • Steyerberg E.W.
        • Harrell F.E.
        • Borsboom G.J.J.
        • Eijkemans M.J.
        • Vergouwe Y.
        • Habbema J.D.F.
        Internal validation of predictive models.
        J Clin Epidemiol. 2001; 54: 774-781https://doi.org/10.1016/S0895-4356(01)00341-9
        • Hosmer D.
        • Lemeshow S.
        • Sturdivant R.
        Applied logistic regression.
        A Wiley-Interscience Publication, New York, NY2000
        • Moons K.
        • Groot J.
        • de Bouwmeester W.
        Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist.
        PLoS. 2014; 11: e1001744
        • Collins G.S.
        • Reitsma J.B.
        • Altman D.G.
        • Moons K.
        Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement.
        BMC Med. 2015; 13: 1https://doi.org/10.1186/s12916-014-0241-z
        • Peduzzi P.
        • Concato J.
        • Kemper E.
        • Holford T.R.
        • Feinstein A.R.
        A simulation study of the number of events per variable in logistic regression analysis.
        J Clin Epidemiol. 1996; 49: 1373-1379https://doi.org/10.1016/S0895-4356(96)00236-3
        • Glei D.A.
        • Goldman N.
        • Risques R.A.
        • Rehkopf D.H.
        • Dow W.H.
        • Rosero-Bixby L.
        • et al.
        Predicting survival from telomere length versus conventional predictors: a multinational population-based cohort study.
        PLoS One. 2016; 11e0152486https://doi.org/10.1371/journal.pone.0152486
        • Newman A.B.
        • Boudreau R.M.
        • Naydeck B.L.
        • Fried L.F.
        • Harris T.B.
        A physiologic index of comorbidity: relationship to mortality and disability.
        J Gerontol A Biol Sci Med Sci. 2008; 63: 603-609
        • Newson R.S.
        • Witteman J.C.M.
        • Franco O.H.
        • Stricker B.H.C.
        • Breteler M.M.B.
        • Hofman A.
        • et al.
        Predicting survival and morbidity-free survival to very old age.
        Age (Dordr). 2010; 32: 521-534https://doi.org/10.1007/s11357-010-9154-8
        • Brown D.S.
        • Thompson W.W.
        • Zack M.M.
        • Arnold S.E.
        • Barile J.P.
        Associations between health-related quality of life and mortality in older adults.
        Prev Sci. 2015; 16: 21-30https://doi.org/10.1007/s11121-013-0437-z
        • Bates C.J.
        • Mansoor M.A.
        • Pentieva K.D.
        • Hamer M.
        • Mishra G.D.
        Biochemical risk indices, including plasma homocysteine, that prospectively predict mortality in older British people: the National Diet and nutrition survey of people aged 65 years and over.
        Br J Nutr. 2010; 104: 893-899https://doi.org/10.1017/S0007114510001236
        • Panas L.J.
        • Siordia C.
        • Angel R.J.
        • Eschbach K.
        • Markides K.S.
        Physical performance and short-term mortality in very old Mexican Americans.
        Exp Aging Res. 2013; 39: 481-492https://doi.org/10.1080/0361073X.2013.839021
        • Carey E.C.
        • Walter L.C.
        • Lindquist K.
        • Covinsky K.E.
        Development and validation of a functional morbidity index to predict mortality in community-dwelling elders.
        J Gen Intern Med. 2004; 19: 1027-1033https://doi.org/10.1111/j.1525-1497.2004.40016.x
        • Jung H.-W.
        • Kim J.W.
        • Han J.W.
        • Kim K.
        • Kim J.H.
        • Kim K.-I.
        • et al.
        Multidimensional geriatric prognostic index, based on a geriatric assessment, for long-term survival in older adults in Korea.
        PLoS One. 2016; 11e0147032https://doi.org/10.1371/journal.pone.0147032
        • Cooper R.
        • Strand B.H.
        • Hardy R.
        • Patel K.V.
        • Kuh D.
        Physical capability in mid-life and survival over 13 years of follow-up: British birth cohort study.
        BMJ. 2014; 348 (g2219—g2219)
        • Steyerberg E.W.
        • Vickers A.J.
        • Cook N.R.
        • Gerds T.
        • Gonen M.
        • Obuchowski N.
        • et al.
        Assessing the performance of prediction models: a framework for traditional and novel measures.
        Epidemiology. 2010; 21: 128-138https://doi.org/10.1097/EDE.0b013e3181c30fb2
        • Walter S.
        • Mackenbach J.
        • Vokó Z.
        • Lhachimi S.
        • Ikram M.A.
        • Uitterlinden A.G.
        • et al.
        Genetic, physiological, and lifestyle predictors of mortality in the general population.
        Am J Public Health. 2012; 102: e3-10https://doi.org/10.2105/AJPH.2011.300596
        • Kheirbek R.E.
        • Alemi F.
        • Fletcher R.
        Heart failure prognosis: comorbidities matter.
        J Palliat Med. 2015; 18: 447-452https://doi.org/10.1089/jpm.2014.0365
        • Stefos T.
        • Lehner L.
        • Render M.
        • Moran E.
        • Almenoff P.
        Determining population based mortality risk in the Department of Veterans Affairs.
        Health Care Manag Sci. 2012; 15: 121-137https://doi.org/10.1007/s10729-011-9189-0
        • Bravo G.
        • Dubois M.-F.
        • Hébert R.
        • De Wals P.
        • Messier L.
        A prospective evaluation of the Charlson comorbidity index for use in long-term care patients.
        J Am Geriatr Soc. 2002; 50: 740-745
        • Frost S.A.
        • Nguyen N.D.
        • Black D.A.
        • Eisman J.A.
        • Nguyen T.V.
        Risk factors for in-hospital post-hip fracture mortality.
        Bone. 2011; 49: 553-558https://doi.org/10.1016/j.bone.2011.06.002
        • Richter B.
        • Koller L.
        • Hohensinner P.J.
        • Zorn G.
        • Brekalo M.
        • Berger R.
        • et al.
        A multi-biomarker risk score improves prediction of long-term mortality in patients with advanced heart failure.
        Int J Cardiol. 2013; 168: 1251-1257https://doi.org/10.1016/j.ijcard.2012.11.052
        • Thomazeau J.
        • Huo Yung Kai S.
        • Rolland Y.
        • Sourdet S.
        • Saffon N.
        • Nourhashemi F.
        Prognostic indices for older adults during the year following hospitalization in an acute medical ward: an update.
        Presse Med. 2017; 46: 360-373https://doi.org/10.1016/j.lpm.2016.09.026
        • Rocker G.
        • Cook D.
        • Sjokvist P.
        • Weaver B.
        • Finfer S.
        • Mcdonald E.
        • et al.
        Clinician predictions of intensive care unit mortality.
        Crit Care Med. 2004; 32: 1149-1154
        • Puvill T.
        • Lindenberg J.
        • Gussekloo J.
        • de Craen A.J.M.
        • Slaets J.P.J.
        • Westendorp R.G.J.
        Associations of various health-ratings with geriatric giants, mortality and life satisfaction in older people.
        PLoS One. 2016; 11e0163499https://doi.org/10.1371/journal.pone.0163499
        • Moons K.G.M.
        • Altman D.G.
        • Vergouwe Y.
        • Royston P.
        Prognosis and prognostic research: application and impact of prognostic models in clinical practice.
        BMJ. 2009; 338: b606https://doi.org/10.1136/BMJ.B606
        • Pencina M.J.
        • D'Agostino R.B.
        • D'Agostino R.B.
        • Vasan R.S.
        Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond.
        Stat Med. 2008; 27: 157-172https://doi.org/10.1002/sim.2929
        • Engelfriet P.
        • Jansen E.
        • Picavet H.
        Biochemical markers of aging for longitudinal studies in humans.
        Epidemiologic. 2013; 35: 132-151
        • Chatterji S.
        • Byles J.
        • Cutler D.
        • Seeman T.
        • Verdes E.
        Health, functioning, and disability in older adults—present status and future implications.
        Lancet. 2015; 385: 563-575https://doi.org/10.1016/S0140-6736(14)61462-8
        • Franceschi C.
        • Campisi J.
        Chronic inflammation (Inflammaging) and its potential contribution to age-associated diseases.
        J Gerontol Ser A Biol Sci Med Sci. 2014; 69: S4-S9https://doi.org/10.1093/gerona/glu057
        • Weverling-Rijnsburger A.W.
        • Blauw G.J.
        • Lagaay A.M.
        • Knock D.L.
        • Meinders A.E.
        • Westendorp R.G.
        Total cholesterol and risk of mortality in the oldest old.
        Lancet. 1997; 350: 1119-1123https://doi.org/10.1016/S0140-6736(97)04430-9
        • Sabayan B.
        • Oleksik A.M.
        • Maier A.B.
        • van Buchem M.A.
        • Poortvliet R.K.E.
        • de Ruijter W.
        • et al.
        High Blood Pressure and Resilience to Physical and Cognitive Decline in the Oldest Old: The Leiden 85-Plus Study.
        J Am Geriatr Soc. 2012; 60 (n/a-n/a)
        • Izaks G.J.
        • Westendorp R.G.
        Ill or just old? Towards a conceptual framework of the relation between ageing and disease.
        BMC Geriatr. 2003; 3: 7https://doi.org/10.1186/1471-2318-3-7
        • Vaupel J.W.
        Biodemography of human ageing.
        Nature. 2010; 4647288: 2010
        • Steyerberg E.W.
        • Harrell F.E.
        • Borsboom G.J.
        • Eijkemans M.J.
        • Vergouwe Y.
        • Habbema J.D.
        Internal validation of predictive models: efficiency of some procedures for logistic regression analysis.
        J Clin Epidemiol. 2001; 54: 774-781