Advertisement

Short-term effects of direct-acting antiviral agents on inflammation and gut microbiota in hepatitis C-infected patients

      Highlights

      • Direct-acting antiviral agents did not counteract the changes induced by HCV in gut.
      • DAAs only improved inflammation and α-diversity in low degrees of fibrosis.
      • It is urgent to begin treatment as soon as possible to reverse HCV-impact on gut.

      Abstract

      Liver damage is associated with gut dysbiosis. New direct-acting antiviral agents (DAAs) are able to eradicate hepatitis C virus (HCV) from the body. However, the short and medium-term effects of DAAs at gut level before advanced liver damage occurs have not been evaluated yet. Thus, we investigated the impact of HCV and DAAs on gut microbiota composition (GM) and systemic inflammation. To achieve this objective, twenty-three non HCV-infected controls and 22 HCV-infected patients were recruited. Only non-cirrhotic patients (fibrosis stage 0–3) were included to avoid the direct impact of cirrhosis and portal hypertension on gut. The HCV-groups were evaluated before the treatment, after completing DAAs treatment and after 3 months. Fecal bacterial 16S rDNA was ultrasequenced and several biochemical/metabolic/inflammatory parameters were quantified. HCV infection was accompanied by a significant increase in TNFα plasma levels. DAAs were able to reduce this increase, especially in lower fibrosis grades. HCV infection was not accompanied by dramatic changes in α-diversity and was not recovered after HCV negativization, although a complete restoration was observed in lower fibrosis degrees. Six phyla, 15 genera and 9 bacterial species resulted differentially abundant among the groups. These differences were almost blunted with lower fibrosis. In summary, neither the usage of DAAs nor 3 months in sustained viral response were able to counteract the changes induced by HCV at gut level. The partial restoration observed in inflammation and α-diversity was only observed in low fibrosis degrees. Thus, it is urgent to begin treatment with DAAs as soon as possible.

      Keywords

      Abbreviations:

      DAAs (Direct-acting antivirals), HCV (Hepatitis C virus), SVR (Sustained viral response), LPS (Lipopolysaccharide), LDL (Low-density lipoprotein), HDL (High-density lipoprotein-), AST (Aspartate aminotransferase), ALT (Alanine aminotransferase), γ-GT (Glutamil transpeptidase), LBP (Lipopolysaccharide-binding protein), sCD14 (Soluble CD14), TNF-α (Tumor necrosis factor-α), IL-6 (Interleukin-6), PCA (Principal component analysis)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McDonald S.A.
        • Hutchinson S.J.
        • Bird S.M.
        • Mills P.R.
        • Hayes P.
        • Dillon J.F.
        • et al.
        Excess morbidity in the hepatitis C-diagnosed population in Scotland, 1991-2006.
        Epidemiol Infect. 2011; 139: 344-353https://doi.org/10.1017/S0950268810001421
        • Neal K.R.
        • Ramsay S.
        • Thomson B.J.
        • Irving W.L.
        Excess mortality rates in a cohort of patients infected with the hepatitis C virus: a prospective study.
        Gut. 2007; 56: 1098-1104https://doi.org/10.1136/gut.2006.113217
        • Hajarizadeh B.
        • Grebely J.
        • Dore G.J.
        Epidemiology and natural history of HCV infection.
        Nat Rev Gastroenterol Hepatol. 2013; 10: 553-562https://doi.org/10.1038/nrgastro.2013.107
        • Gill K.
        • Ghazinian H.
        • Manch R.
        • Gish R.
        Hepatitis C virus as a systemic disease: reaching beyond the liver.
        Hepatol Int. 2016; 10: 415-423https://doi.org/10.1007/s12072-015-9684-3
        • Sherman A.C.
        • Sherman K.E.
        Extrahepatic manifestations of hepatitis C infection: navigating CHASM.
        Curr HIV/AIDS Rep. 2015; 12: 353-361https://doi.org/10.1007/s11904-015-0274-8
        • Tang L.
        • Marcell L.
        • Kottilil S.
        Systemic manifestations of hepatitis C infection.
        Infect Agent Cancer. 2016; 11: 29https://doi.org/10.1186/s13027-016-0076-7
        • Cacoub P.
        • Poynard T.
        • Ghillani P.
        • Charlotte F.
        • Olivi M.
        • Piette J.C.
        • et al.
        Extrahepatic manifestations of chronic hepatitis C. MULTIVIRC group. Multidepartment virus C.
        Arthritis Rheum. 1999; 42: 2204-2212https://doi.org/10.1002/1529-0131(199910)42:10<2204::AID-ANR24>3.0.CO;2-D
        • Lee M.H.
        • Yang H.I.
        • Lu S.N.
        • Jen C.L.
        • You S.L.
        • Wang L.Y.
        • et al.
        Chronic hepatitis C virus infection increases mortality from hepatic and extrahepatic diseases: a community-based long-term prospective study.
        J Infect Dis. 2012; 206: 469-477https://doi.org/10.1093/infdis/jis385
        • Yan F.M.
        • Chen A.S.
        • Hao F.
        • Zhao X.P.
        • Gu C.H.
        • Zhao L.B.
        • et al.
        Hepatitis C virus may infect extrahepatic tissues in patients with hepatitis C.
        World J Gastroenterol. 2000; 6: 805-811
        • Preveden T.
        • Scarpellini E.
        • Milic N.
        • Luzza F.
        • Abenavoli L.
        Gut microbiota changes and chronic hepatitis C virus infection.
        Expert Rev Gastroenterol Hepatol. 2017; 11: 813-819https://doi.org/10.1080/17474124.2017.1343663
        • Haque T.R.
        • Barritt ASt
        Intestinal microbiota in liver disease.
        Best Pract Res Clin Gastroenterol. 2016; 30: 133-142https://doi.org/10.1016/j.bpg.2016.02.004
        • Betrapally N.S.
        • Gillevet P.M.
        • Bajaj J.S.
        Gut microbiome and liver disease.
        Transl Res. 2017; 179: 49-59https://doi.org/10.1016/j.trsl.2016.07.005
        • Bajaj J.S.
        • Heuman D.M.
        • Hylemon P.B.
        • Sanyal A.J.
        • White M.B.
        • Monteith P.
        • et al.
        Altered profile of human gut microbiome is associated with cirrhosis and its complications.
        J Hepatol. 2014; 60: 940-947https://doi.org/10.1016/j.jhep.2013.12.019
        • Heidrich B.
        • Vital M.
        • Plumeier I.
        • Doscher N.
        • Kahl S.
        • Kirschner J.
        • et al.
        Intestinal microbiota in patients with chronic hepatitis C with and without cirrhosis compared with healthy controls.
        Liver Int. 2018; 38: 50-58https://doi.org/10.1111/liv.13485
        • Aly A.M.
        • Adel A.
        • El-Gendy A.O.
        • Essam T.M.
        • Aziz R.K.
        Gut microbiome alterations in patients with stage 4 hepatitis C.
        Gut Pathog. 2016; 8: 42https://doi.org/10.1186/s13099-016-0124-2
        • Inoue T.
        • Nakayama J.
        • Moriya K.
        • Kawaratani H.
        • Momoda R.
        • Ito K.
        • et al.
        Gut Dysbiosis associated with hepatitis C virus infection.
        Clin Infect Dis. 2018; 67: 869-877https://doi.org/10.1093/cid/ciy205
        • Ponziani F.R.
        • Putignani L.
        • Paroni Sterbini F.
        • Petito V.
        • Picca A.
        • Del Chierico F.
        • et al.
        Influence of hepatitis C virus eradication with direct-acting antivirals on the gut microbiota in patients with cirrhosis.
        Aliment Pharmacol Ther. 2018; 48: 1301-1311https://doi.org/10.1111/apt.15004
        • Jiang J.W.
        • Chen X.H.
        • Ren Z.G.
        • Zheng S.S.
        Gut microbial dysbiosis associates hepatocellular carcinoma via the gut-liver axis.
        Hepatobiliary Pancreat Dis Int. 2018; https://doi.org/10.1016/j.hbpd.2018.11.002
        • Bajaj J.S.
        • Sterling R.K.
        • Betrapally N.S.
        • Nixon D.E.
        • Fuchs M.
        • Daita K.
        • et al.
        HCV eradication does not impact gut dysbiosis or systemic inflammation in cirrhotic patients.
        Aliment Pharmacol Ther. 2016; 44: 638-643https://doi.org/10.1111/apt.13732
        • Caporaso J.G.
        • Lauber C.L.
        • Walters W.A.
        • Berg-Lyons D.
        • Lozupone C.A.
        • Turnbaugh P.J.
        • et al.
        Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.
        Proc Natl Acad Sci U S A. 2011; 108: 4516-4522https://doi.org/10.1073/pnas.1000080107
        • DeSantis T.Z.
        • Hugenholtz P.
        • Larsen N.
        • Rojas M.
        • Brodie E.L.
        • Keller K.
        • et al.
        Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB.
        Appl Environ Microbiol. 2006; 72: 5069-5072https://doi.org/10.1128/AEM.03006-05
        • Edgar R.C.
        Updating the 97% identity threshold for 16S ribosomal RNA OTUs.
        Bioinformatics. 2018; https://doi.org/10.1093/bioinformatics/bty113
        • RV A.T.
        • Duarte M.I.
        • Pagliari C.
        • Fernandes E.R.
        • Brasil R.A.
        • Benard G.
        • et al.
        Tissue and serum immune response in chronic hepatitis C with mild histological lesions.
        Mem Inst Oswaldo Cruz. 2010; 105: 25-32
        • Marusawa H.
        • Hijikata M.
        • Chiba T.
        • Shimotohno K.
        Hepatitis C virus core protein inhibits Fas- and tumor necrosis factor alpha-mediated apoptosis via NF-kappaB activation.
        J Virol. 1999; 73: 4713-4720
        • Heinrich P.C.
        • Castell J.V.
        • Andus T.
        Interleukin-6 and the acute phase response.
        Biochem J. 1990; 265: 621-636https://doi.org/10.1042/bj2650621
        • Oyanagi Y.
        • Takahashi T.
        • Matsui S.
        • Takahashi S.
        • Boku S.
        • Takahashi K.
        • et al.
        Enhanced expression of interleukin-6 in chronic hepatitis C.
        Liver. 1999; 19: 464-472
        • Villani R.
        • Facciorusso A.
        • Bellanti F.
        • Tamborra R.
        • Piscazzi A.
        • Landriscina M.
        • et al.
        DAAs rapidly reduce inflammation but increase serum VEGF level: a rationale for tumor risk during anti-HCV treatment.
        PLoS One. 2016; 11e0167934https://doi.org/10.1371/journal.pone.0167934
        • Fuster D.
        • Tsui J.I.
        • Cheng D.M.
        • Quinn E.K.
        • Armah K.A.
        • Nunes D.
        • et al.
        Interleukin-6 is associated with noninvasive markers of liver fibrosis in HIV-infected patients with alcohol problems.
        AIDS Res Hum Retroviruses. 2013; 29: 1110-1116https://doi.org/10.1089/AID.2012.0348
        • Negro F.
        • Forton D.
        • Craxi A.
        • Sulkowski M.S.
        • Feld J.J.
        • Manns M.P.
        Extrahepatic morbidity and mortality of chronic hepatitis C.
        Gastroenterology. 2015; 149: 1345-1360https://doi.org/10.1053/j.gastro.2015.08.035
        • Nien H.C.
        • Hsu S.J.
        • Su T.H.
        • Yang P.J.
        • Sheu J.C.
        • Wang J.T.
        • et al.
        High serum lipopolysaccharide-binding protein level in chronic hepatitis C viral infection is reduced by anti-viral treatments.
        PLoS One. 2017; 12e0170028https://doi.org/10.1371/journal.pone.0170028
        • Merchante N.
        • Aldamiz-Echevarria T.
        • Garcia-Alvarez M.
        • Rivero-Juarez A.
        • Macias J.
        • Miralles P.
        • et al.
        Bacterial translocation and clinical progression of HCV-related cirrhosis in HIV-infected patients.
        J Viral Hepat. 2018; 25: 180-186https://doi.org/10.1111/jvh.12769
        • Munteanu D.
        • Negru A.
        • Radulescu M.
        • Mihailescu R.
        • Arama S.S.
        • Arama V.
        Evaluation of bacterial translocation in patients with chronic HCV infection.
        Rom J Intern Med. 2014; 52: 91-96
        • Sandler N.G.
        • Koh C.
        • Roque A.
        • Eccleston J.L.
        • Siegel R.B.
        • Demino M.
        • et al.
        Host response to translocated microbial products predicts outcomes of patients with HBV or HCV infection.
        Gastroenterology. 2011; 141 (30 e1–3): 1220-1230
        • Fukui H.
        Gut microbiota and host reaction in liver diseases.
        Microorganisms. 2015; 3: 759-791https://doi.org/10.3390/microorganisms3040759
        • Tan J.
        • McKenzie C.
        • Potamitis M.
        • Thorburn A.N.
        • Mackay C.R.
        • Macia L.
        The role of short-chain fatty acids in health and disease.
        Adv Immunol. 2014; 121: 91-119https://doi.org/10.1016/B978-0-12-800100-4.00003-9
        • Vital M.
        • Karch A.
        • Pieper D.H.
        Colonic butyrate-producing communities in humans: an overview using omics data.
        mSystems. 2017; 2https://doi.org/10.1128/mSystems.00130-17
        • Chen Y.
        • Ji F.
        • Guo J.
        • Shi D.
        • Fang D.
        • Li L.
        Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology.
        Sci Rep. 2016; 6: 34055https://doi.org/10.1038/srep34055
        • Chen Y.
        • Yang F.
        • Lu H.
        • Wang B.
        • Lei D.
        • Wang Y.
        • et al.
        Characterization of fecal microbial communities in patients with liver cirrhosis.
        Hepatology. 2011; 54: 562-572https://doi.org/10.1002/hep.24423
        • Perez-Monter C.
        • Escalona-Nandez I.
        • Estanes-Hernandez A.
        • Noriega-Lopez L.G.
        • Torre-Delgadillo A.
        Intestinal microbiota assessment in cirrhotic patients from a Mexican mestizo population.
        Rev Gastroenterol Mex. 2019; 84: 26-35https://doi.org/10.1016/j.rgmx.2018.02.010
        • Bajaj J.S.
        • Hylemon P.B.
        • Ridlon J.M.
        • Heuman D.M.
        • Daita K.
        • White M.B.
        • et al.
        Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation.
        Am J Physiol Gastrointest Liver Physiol. 2012; 303: G675-G685https://doi.org/10.1152/ajpgi.00152.2012
        • San-Juan-Vergara H.
        • Zurek E.
        • Ajami N.J.
        • Mogollon C.
        • Pena M.
        • Portnoy I.
        • et al.
        A Lachnospiraceae-dominated bacterial signature in the fecal microbiota of HIV-infected individuals from Colombia, South America.
        Sci Rep. 2018; 8: 4479https://doi.org/10.1038/s41598-018-22629-7
        • Kwak D.S.
        • Jun D.W.
        • Seo J.G.
        • Chung W.S.
        • Park S.E.
        • Lee K.N.
        • et al.
        Short-term probiotic therapy alleviates small intestinal bacterial overgrowth, but does not improve intestinal permeability in chronic liver disease.
        Eur J Gastroenterol Hepatol. 2014; 26: 1353-1359https://doi.org/10.1097/MEG.0000000000000214
        • Dao M.C.
        • Everard A.
        • Aron-Wisnewsky J.
        • Sokolovska N.
        • Prifti E.
        • Verger E.O.
        • et al.
        Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology.
        Gut. 2016; 65: 426-436https://doi.org/10.1136/gutjnl-2014-308778
        • Everard A.
        • Belzer C.
        • Geurts L.
        • Ouwerkerk J.P.
        • Druart C.
        • Bindels L.B.
        • et al.
        Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.
        Proc Natl Acad Sci U S A. 2013; 110: 9066-9071https://doi.org/10.1073/pnas.1219451110
        • Schneeberger M.
        • Everard A.
        • Gomez-Valades A.G.
        • Matamoros S.
        • Ramirez S.
        • Delzenne N.M.
        • et al.
        Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice.
        Sci Rep. 2015; 5: 16643https://doi.org/10.1038/srep16643
        • Tan L.
        • Zhao S.
        • Zhu W.
        • Wu L.
        • Li J.
        • Shen M.
        • et al.
        The Akkermansia muciniphila is a gut microbiota signature in psoriasis.
        Exp Dermatol. 2018; 27: 144-149https://doi.org/10.1111/exd.13463
        • Cani P.D.
        • de Vos W.M.
        Next-generation beneficial microbes: the case of Akkermansia muciniphila.
        Front Microbiol. 2017; 8: 1765https://doi.org/10.3389/fmicb.2017.01765
        • Kelly B.J.
        • Gross R.
        • Bittinger K.
        • Sherrill-Mix S.
        • Lewis J.D.
        • Collman R.G.
        • et al.
        Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA.
        Bioinformatics. 2015; 31: 2461-2468https://doi.org/10.1093/bioinformatics/btv183
        • La Rosa P.S.
        • Brooks J.P.
        • Deych E.
        • Boone E.L.
        • Edwards D.J.
        • Wang Q.
        • et al.
        Hypothesis testing and power calculations for taxonomic-based human microbiome data.
        PLoS One. 2012; 7e52078https://doi.org/10.1371/journal.pone.0052078
        • Villanueva-Millan M.J.
        • Perez-Matute P.
        • Recio-Fernandez E.
        • Lezana Rosales J.M.
        • Oteo J.A.
        Differential effects of antiretrovirals on microbial translocation and gut microbiota composition of HIV-infected patients.
        J Int AIDS Soc. 2017; 20: 21526https://doi.org/10.7448/IAS.20.1.21526