The pituitary in nuclear medicine imaging

  • Pedro Iglesias
    Corresponding author at: Department of Endocrinology and Nutrition, Hospital Universitario Puerta de Hierro Majadahonda, Calle Manuel de Falla 1, 28222 Madrid, Spain.
    Department of Endocrinology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
    Search for articles by this author
  • Jorge Cardona
    Department of Nuclear Medicine, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
    Search for articles by this author
  • Juan José Díez
    Department of Endocrinology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain

    Department of Medicine, Universidad Autónoma de Madrid, Spain.
    Search for articles by this author
Published:September 11, 2019DOI:


      • Pituitary gland does not usually accumulate 18F-FDG.
      • Incidentally pituitary 18F-FDG PET uptake is usually associated with benign pituitary tumors.
      • Hypophysitis shows a homogenous and intense enhancement and intense pituitary uptake of 18FDG.
      • Metastasis to the pituitary can be detected by 18F-FDG PET.
      • Octreoscan is a useful tool to confirm the presence of SSTRs in some pituitary adenomas.


      The pituitary is an endocrine gland with ability to uptake diverse radiopharmaceuticals and, therefore, susceptible to be investigated by nuclear medicine diagnostic procedures. Although this topic has been scarcely scrutinized, we have data indicating that somatostatin receptor scintigraphy with111In-DTPA-D-Phe-octreotide or 99mTc-EDDA/HYNIC-TOC may be of clinical utility in the diagnosis of some pituitary adenomas (PA). Only a few studies have evaluated the diagnostic performance of 99mTc-MIBI and 99mTc (V)-DMSA scintigraphy in pituitary disease. Scintigraphy using 123I-methoxybenzamide (123I-IBZM) might be useful in macroprolactinomas expressing dopamine D2 receptors. Pituitary gland does not usually accumulate 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) and, therefore, it is not visualized on positron emission tomography (PET) imaging studies with this radiotracer. The pituitary uptake on18F-FDG PET/CT scans performed in the follow-up of oncological patients are uncommon. However, 60% of these incidental findings are due to PA, mainly non-functioning pituitary macroadenomas, and a small percentage to metastases or other pituitary lesions. Interestingly, 18F-FDG PET/CT may identify hypophysitis induced by different immunotherapeutic agents used in cancer patients. Positive 18F-FDG uptake has been reported in a high percentage of patients with PA, mainly macroadenomas and it seems that there is correlation between tumor size and SUVmax. 68Ga-DOTA-TATE PET/CT may identify functioning and non-functioning PA, although this technique is more useful in the detection of remaining normal pituitary tissue after transsphenoidal adenomectomy, and in the confirmation of recurrence of functioning PA, such as thyrotroph-secreting PA. Furthermore, 68Ga-DOTA-TATE uptake has potential therapeutic implications on molecular-targeted therapy. Lastly, other radiopharmaceuticals that have shown to be taken up in some patients with pituitary disease include 18F-DOPA (prolactinoma), 11C-methionine (residual or recurrent PA), O-(2-18F-fluoroethyl)-l-tyrosine (metastasis), 18F-choline (silent adenoma, ectopic corticotropinoma), and 13N-ammonia (hypopituitarism).


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Lim M.M.D.
        • Gnerre J.
        • Gerard P.
        Mechanisms of uptake of common radiopharmaceuticals RadioGraphics fundamentals | online presentation.
        Radiographics. 2018; 38: 1550-1551
        • Jeong S.Y.
        • Lee S.W.
        • Lee H.J.
        • Kang S.
        • Seo J.H.
        • Chun K.A.
        • et al.
        Incidental pituitary uptake on whole-body 18F-FDG PET/CT: a multicentre study.
        Eur J Nucl Med Mol Imaging. 2010; 37: 2334-2343
        • Hyun S.H.
        • Choi J.Y.
        • Lee K.H.
        • Choe Y.S.
        • Kim B.T.
        Incidental focal 18F-FDG uptake in the pituitary gland: clinical significance and differential diagnostic criteria.
        J Nucl Med. 2011; 52: 547-550
        • Ju H.
        • Zhou J.
        • Pan Y.
        • Lv J.
        • Zhang Y.
        Evaluation of pituitary uptake incidentally identified on (18)F-FDG PET/CT scan.
        Oncotarget. 2017; 8: 55544-55549
        • Fusco A.
        • Lugli F.
        • Sacco E.
        • Tilaro L.
        • Bianchi A.
        • Angelini F.
        • et al.
        Efficacy of the combined cabergoline and octreotide treatment in a case of a dopamine-agonist resistant macroprolactinoma.
        Pituitary. 2011; 14: 351-357
        • Del Gatto V.
        • Bima C.
        • Chiloiro S.
        • Giampietro A.
        • Bianchi A.
        Use of 111In-pentetreotide scintigraphy for diagnosis and management of resistant macroprolactinoma.
        Endocrine. 2018; 60: 532-534
        • Zasadny K.R.
        • Wahl R.L.
        Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction.
        Radiology. 1993; 189: 847-850
        • Campeau R.J.
        • David O.
        • Dowling A.M.
        Pituitary adenoma detected on FDG positron emission tomography in a patient with mucosa-associated lymphoid tissue lymphoma.
        Clin Nucl Med. 2003; 28: 296-298
        • van der Hiel B.
        • Blank C.U.
        • Haanen J.B.
        • Stokkel M.P.
        Detection of early onset of hypophysitis by (18)F-FDG PET-CT in a patient with advanced stage melanoma treated with ipilimumab.
        Clin Nucl Med. 2013; 38: e182-e184
        • De Souza B.
        • Brunetti A.
        • Fulham M.J.
        • Brooks R.A.
        • DeMichele D.
        • Cook P.
        • et al.
        Pituitary microadenomas: a PET study.
        Radiology. 1990; 177: 39-44
        • Francavilla L.
        • Miletich R.S.
        • DeMichele D.
        • Patronas N.J.
        • Oldfield E.H.
        • Weintraub B.D.
        • et al.
        Positron emission tomography of pituitary macroadenomas: hormone production and effects of therapies.
        Neurosurgery. 1991; 28
        • Seok H.
        • Lee E.Y.
        • Choe E.Y.
        • Yang W.I.
        • Kim J.Y.
        • Shin D.Y.
        • et al.
        Analysis of 18F-fluorodeoxyglucose positron emission tomography findings in patients with pituitary lesions.
        Korean J Intern Med. 2013; 28: 81-88
        • Ding Y.
        • Wu S.
        • Xu J.
        • Wang H.
        • Ma C.
        Pituitary 18F-FDG uptake correlates with serum TSH levels in thyroid cancer patients on 18F-FDG PET/CT.
        Nucl Med Commun. 2019; 40: 57-62
        • Arita K.
        • Tominaga A.
        • Sugiyama K.
        • Eguchi K.
        • Iida K.
        • Sumida M.
        • et al.
        Natural course of incidentally found nonfunctioning pituitary adenoma, with special reference to pituitary apoplexy during follow-up examination.
        J Neurosurg. 2006; 104: 884-891
        • Esteves C.
        • Neves C.
        • Augusto L.
        • Menezes J.
        • Pereira J.
        • Bernardes I.
        • et al.
        Pituitary incidentalomas: analysis of a neuroradiological cohort.
        Pituitary. 2015; 18: 777-781
        • Freda P.U.
        • Post K.D.
        Differential diagnosis of sellar masses.
        Endocrinol Metab Clin N Am. 1999; 28: vi
        • Wachsmann J.W.
        • Ganti R.
        • Peng F.
        Immune-mediated disease in ipilimumab immunotherapy of melanoma with FDG PET-CT.
        Acad Radiol. 2017; 24: 111-115
        • Iglesias P.
        Cancer immunotherapy-induced endocrinopathies: clinical behavior and therapeutic approach.
        Eur J Intern Med. 2018; 47: 6-13
        • Pucar D.
        • Boustani A.M.
        • Bronen R.A.
        • Saperstein L.
        Superior pituitary border analysis in immunotherapy-induced hypophysitis.
        Clin Nucl Med. 2018; 43: 284-286
        • Mekki A.
        • Dercle L.
        • Lichtenstein P.
        • Marabelle A.
        • Michot J.M.
        • Lambotte O.
        • et al.
        Detection of immune-related adverse events by medical imaging in patients treated with anti-programmed cell death 1.
        Eur J Cancer. 2018; 96: 91-104
        • Jeong Y.H.
        • Kim D.
        • Lee J.W.
        • Rhee Y.
        • Nam K.H.
        • Yun M.
        • et al.
        Pituitary 18F-FDG uptake correlates with serum TSH levels in subjects with diffuse thyroid 18F-FDG uptake.
        Clin Nucl Med. 2015; 40: 632-636
        • Wang H.
        • Hou B.
        • Lu L.
        • Feng M.
        • Zang J.
        • Yao S.
        • et al.
        PET/MRI in the diagnosis of hormone-producing pituitary microadenoma: a prospective pilot study.
        J Nucl Med. 2018; 59: 523-528
        • Lu J.
        • Montgomery B.K.
        • Chatain G.P.
        • Bugarini A.
        • Zhang Q.
        • Wang X.
        • et al.
        Corticotropin releasing hormone can selectively stimulate glucose uptake in corticotropinoma via glucose transporter 1.
        Mol Cell Endocrinol. 2018; 470: 105-114
        • Boyle J.
        • Patronas N.J.
        • Smirniotopoulos J.
        • Herscovitch P.
        • Dieckman W.
        • Millo C.
        • et al.
        CRH stimulation improves 18F-FDG-PET detection of pituitary adenomas in Cushing's disease.
        Endocrine. 2019; 65: 155-165
        • Habu M.
        • Tokimura H.
        • Hirano H.
        • Yasuda S.
        • Nagatomo Y.
        • Iwai Y.
        • et al.
        Pituitary metastases: current practice in Japan.
        J Neurosurg. 2015; 123: 998-1007
        • Salvatore B.
        • D'Amico D.
        • Fonti R.
        Metastasis to the Sellar/Suprasellar region in a patient with endometrial carcinoma detected by 18F-FDG PET/CT.
        Clin Nucl Med. 2018; 43: 363-364
        • Castle-Kirszbaum M.
        • Goldschlager T.
        • Ho B.
        • Wang Y.Y.
        • King J.
        Twelve cases of pituitary metastasis: a case series and review of the literature.
        Pituitary. 2018; 21: 463-473
        • Tamai S.
        • Ueno M.
        • Hayashi Y.
        • Sasagawa Y.
        • Watanabe T.
        • Murakami K.I.
        • et al.
        Enlargement of Langerhans cell histiocytosis of the hypothalamus with progression into the basal ganglia and white matter.
        Surg Neurol Int. 2018; 9: 197
        • Boni G.
        • Ferdeghini M.
        • Bellina C.R.
        • Matteucci F.
        • Castro Lopez E.
        • Parenti G.
        • et al.
        111In-[DTPA-D-Phe]-octreotide scintigraphy in functioning and non-functioning pituitary adenomas.
        Q J Nucl Med. 1995; 39: 90-93
        • Colao A.
        • Lastoria S.
        • Ferone D.
        • Varrella P.
        • Marzullo P.
        • Pivonello R.
        • et al.
        The pituitary uptake of (111)In-DTPA-D-Phe1-octreotide in the normal pituitary and in pituitary adenomas.
        J Endocrinol Investig. 1999; 22: 176-183
        • Vukomanovic V.R.
        • Matovic M.
        • Doknic M.
        • Ignjatovic V.
        • SimicVukomanovic I.
        • Djukic S.
        • et al.
        Clinical usefulness of 99mTc-HYNIC-TOC, 99mTc(V)-DMSA, and 99mTc-MIBI SPECT in the evaluation of pituitary adenomas.
        Nucl Med Commun. 2019; 40: 41-51
        • Broson-Chazot F.
        • Houzard C.
        • Ajzenberg C.
        • Nocaudie M.
        • Duet M.
        • Mundler O.
        • et al.
        Somatostatin receptor imaging in somatotroph and non-functioning pituitary adenomas: correlation with hormonal and visual responses to octreotide.
        Clin Endocrinol. 1997; 47
        • Plockinger U.
        • Bader M.
        • Hopfenmuller W.
        • Saeger W.
        • Quabbe H.J.
        Results of somatostatin receptor scintigraphy do not predict pituitary tumor volume- and hormone-response to ocreotide therapy and do not correlate with tumor histology.
        Eur J Endocrinol. 1997; 136: 369-376
        • Fusco A.
        • Giampietro A.
        • Bianchi A.
        • Cimino V.
        • Lugli F.
        • Piacentini S.
        • et al.
        Treatment with octreotide LAR in clinically non-functioning pituitary adenoma: results from a case-control study.
        Pituitary. 2012; 15: 571-578
        • Kuyumcu S.
        • Ozkan Z.G.
        • Sanli Y.
        • Yilmaz E.
        • Mudun A.
        • Adalet I.
        • et al.
        Physiological and tumoral uptake of (68)Ga-DOTATATE: standardized uptake values and challenges in interpretation.
        Ann Nucl Med. 2013; 27: 538-545
        • Moradi F.
        • Minamimoto R.
        • Jamali M.
        • Barkhodari A.
        • Quon A.
        • Mittra E.
        • et al.
        Physiological distribution of 68Ga-DOTA-TATE: an atlas of standardized uptake values.
        J Nucl Med. 2015; 56: 16
        • Parghane R.V.
        • Agrawal K.
        • Mittal B.R.
        • Shukla J.
        • Bhattacharya A.
        • Mukherjee K.K.
        68Ga DOTATATE PET/CT in a rare coexistence of pituitary macroadenoma and multiple paragangliomas.
        Clin Nucl Med. 2014; 39: 91-93
        • d'Amico A.
        • Stapor-Fudzinska M.
        • Tarnawski R.
        CyberKnife radiosurgery planning of a secreting pituitary adenoma performed with (6)(8)Ga DOTATATE PET and MRI.
        Clin Nucl Med. 2014; 39: 1043-1044
        • Basu S.
        • Ranade R.
        • Hazarika S.
        68Ga DOTATATE PET/CT of synchronous meningioma and prolactinoma.
        Clin Nucl Med. 2016; 41: 230-231
        • Zhao X.
        • Xiao J.
        • Xing B.
        • Wang R.
        • Zhu Z.
        • Li F.
        Comparison of (68)Ga DOTATATE to 18F-FDG uptake is useful in the differentiation of residual or recurrent pituitary adenoma from the remaining pituitary tissue after transsphenoidaladenomectomy.
        Clin Nucl Med. 2014; 39: 605-608
        • Gauthe M.
        • Sarfati J.
        • Bourcigaux N.
        • Christin-Maitre S.
        • Talbot J.N.
        • Montravers F.
        Pituitary adenoma recurrence suspected on central hyperthyroidism despite empty sella and confirmed by 68Ga-DOTA-TOC PET/CT.
        Clin Nucl Med. 2017; 42: 454-455
        • Xiao J.
        • Zhu Z.
        • Zhong D.
        • Ma W.
        • Wang R.
        Improvement in diagnosis of metastatic pituitary carcinoma by 68Ga DOTATATE PET/CT.
        Clin Nucl Med. 2015; 40: e129-e131
        • Novruzov F.
        • Aliyev J.A.
        • Jaunmuktane Z.
        • Bomanji J.B.
        • Kayani I.
        The use of (68)Ga DOTATATE PET/CT for diagnostic assessment and monitoring of (177)Lu DOTATATE therapy in pituitary carcinoma.
        Clin Nucl Med. 2015; 40: 47-49
        • Kojima T.
        • Mizumura S.
        • Kumita S.I.
        • Kumazaki T.
        • Teramoto A.
        Is technetium-99m-MIBI taken up by the normal pituitary gland? A comparison of normal pituitary glands and pituitary adenomas.
        Ann Nucl Med. 2001; 15: 321-327
        • Tiktinsky E.
        • Horne T.
        • Friger M.
        • Agranovich S.
        • Lantsberg S.
        Pituitary incidentalomas detected with technetium-99m MIBI in patients with suspected parathyroid adenoma: preliminary results.
        World J Nucl Med. 2012; 11: 3-6
        • Araz M.
        • Cayir D.
        • Ucan B.
        • Dilli A.
        • Cakal E.
        Clinical significance of incidental pituitary TC-99m MIBI uptake on parathyroid spect and factors affecting uptake intensity.
        Cancer Biother Radiopharm. 2018; 33: 295-299
        • Calabria F.F.
        • Chiaravalloti A.
        • Jaffrain-Rea M.L.
        • Zinzi M.
        • Sannino P.
        • Minniti G.
        • et al.
        18F-DOPA PET/CT physiological distribution and pitfalls: experience in 215 patients.
        Clin Nucl Med. 2016; 41: 753-760
        • Heimburger C.
        • Bund C.
        • Addeo P.
        • Goichot B.
        • Imperiale A.
        18F-FDOPA uptake reflects the efficacy of dopamine agonists treatment in pituitary prolactinoma.
        Clin Nucl Med. 2018; 43: e324-e325
        • Gillam M.P.
        • Molitch M.E.
        • Lombardi G.
        • Colao A.
        Advances in the treatment of prolactinomas.
        Endocr Rev. 2006; 27: 485-534
        • Mertens K.
        • Ham H.
        • Deblaere K.
        • Kalala J.P.
        • Van den Broecke C.
        • Slaets D.
        • et al.
        Distribution patterns of 18F-labelled fluoromethylcholine in normal structures and tumors of the head: a PET/MRI evaluation.
        Clin Nucl Med. 2012; 37: e196-e203
        • Maffione A.M.
        • Mandoliti G.
        • Pasini F.
        • Colletti P.M.
        • Rubello D.
        Pituitary non-functioning adenoma disclosed at 18F-choline PET/CT to investigate a prostate cancer relapse.
        Clin Nucl Med. 2016; 41: e460-e461
        • Sindoni A.
        • Bodanza V.
        • Tatta R.
        • Baresic T.
        • Borsatti E.
        Ectopic adrenocorticotropic hormone-secreting pituitary adenoma localized by 18F-choline PET/CT.
        Clin Nucl Med. 2018; 43: e25-e26
        • Bergstrom M.
        • Muhr C.
        • Lundberg P.O.
        • Bergstrom K.
        • Lundqvist H.
        • Antoni G.
        • et al.
        Amino acid distribution and metabolism in pituitary adenomas using positron emission tomography with D-[11C]methionine and L-[11C]methionine.
        J Comput Assist Tomogr. 1987; 11: 384-389
        • Tang B.N.
        • Levivier M.
        • Heureux M.
        • Wikler D.
        • Massager N.
        • Devriendt D.
        • et al.
        11C-methionine PET for the diagnosis and management of recurrent pituitary adenomas.
        Eur J Nucl Med Mol Imaging. 2006; 33: 169-178
        • Rodriguez-Barcelo S.
        • Gutierrez-Cardo A.
        • Dominguez-Paez M.
        • Medina-Imbroda J.
        • Romero-Moreno L.
        • Arraez-Sanchez M.
        Clinical usefulness of coregistered 11C-methionine positron emission tomography/3-T magnetic resonance imaging at the follow-up of acromegaly.
        World Neurosurg. 2014; 82: 468-473
        • Koulouri O.
        • Steuwe A.
        • Gillett D.
        • Hoole A.C.
        • Powlson A.S.
        • Donnelly N.A.
        • et al.
        A role for 11C-methionine PET imaging in ACTH-dependent Cushing's syndrome.
        Eur J Endocrinol. 2015; 173: M107-M120
        • Koulouri O.
        • Kandasamy N.
        • Hoole A.C.
        • Gillett D.
        • Heard S.
        • Powlson A.S.
        • et al.
        Successful treatment of residual pituitary adenoma in persistent acromegaly following localisation by 11C-methionine PET co-registered with MRI.
        Eur J Endocrinol. 2016; 175: 485-498
        • Feng Z.
        • He D.
        • Mao Z.
        • Wang Z.
        • Zhu Y.
        • Zhang X.
        • et al.
        Utility of 11C-methionine and 18F-FDG PET/CT in patients with functioning pituitary adenomas.
        Clin Nucl Med. 2016; 41: e130-e134
        • Koulouri O.
        • Hoole A.C.
        • English P.
        • Allinson K.
        • Antoun N.
        • Cheow H.
        • et al.
        Localisation of an occult thyrotropinoma with (11)C-methionine PET-CT before and after somatostatin analogue therapy.
        Lancet Diabetes Endocrinol. 2016; 4: 1050
        • Yamamura K.
        • Suzuki S.
        • Yamamoto I.
        Differentiation of pituitary adenomas from other sellar and parasellar tumors by 99mTc(V)-DMSA scintigraphy.
        Neurol Med Chir (Tokyo). 2003; 43
        • Lastoria S.
        • Colao A.
        • Vergara E.
        • Ferone D.
        • Varrella P.
        • Merola B.
        • et al.
        Technetium-99m pentavalent dimercaptosuccinic acid imaging in patients with pituitary adenomas.
        Eur J Endocrinol. 1995; 133: 38-47
        • de Herder W.W.
        • Reijs A.E.
        • Kwekkeboom D.J.
        • Hofland L.J.
        • Nobels F.R.
        • Oei H.Y.
        • et al.
        In vivo imaging of pituitary tumours using a radiolabelled dopamine D2 receptor radioligand.
        Clin Endocrinol. 1996; 45
        • Ferone D.
        • Lastoria S.
        • Colao A.
        • Varrella P.
        • Cerbone G.
        • Acampa W.
        • et al.
        Correlation of scintigraphic results using 123I-methoxybenzamide with hormone levels and tumor size response to quinagolide in patients with pituitary adenomas.
        J Clin Endocrinol Metab. 1998; 83: 248-252
        • Colao A.
        • Ferone D.
        • Lastoria S.
        • Cerbone G.
        • Di Sarno A.
        • Di Somma C.
        • et al.
        Hormone levels and tumour size response to quinagolide and cabergoline in patients with prolactin-secreting and clinically non-functioning pituitary adenomas: predictive value of pituitary scintigraphy with 123I-methoxybenzamide.
        Clin Endocrinol. 2000; 52
        • Currie G.M.
        • Trifunovic M.
        • Kiat H.
        • Saunders C.
        • Chung D.
        • Ong Y.Y.
        • et al.
        Pituitary incidentaloma found on O-(2-18F-fluoroethyl)-l-tyrosine PET.
        J Nucl Med Technol. 2014; 42: 218-222
        • Xiangsong Z.
        • Dianchao Y.
        • Anwu T.
        Dynamic 13N-ammonia PET: a new imaging method to diagnose hypopituitarism.
        J Nucl Med. 2005; 46: 44-47
        • Wang Z.
        • Mao Z.
        • Zhang X.
        • He D.
        • Wang X.
        • Du Q.
        • et al.
        Utility of (13)N-ammonia PET/CT to detect pituitary tissue in patients with pituitary adenomas.
        Acad Radiol. 2018;