Advertisement

Comparative influence of Acute Illness Severity and comorbidity on mortality

Published:November 22, 2019DOI:https://doi.org/10.1016/j.ejim.2019.11.014

      Highlights

      • High illness severity is common and associated with increased mortality.
      • High comorbidity is less frequent but also associated with increased mortality.
      • Illness severity and comorbidity interact to accentuate the effect of comorbidity on mortality.

      Abstract

      Background

      The extent to which illness severity and comorbidity determine the outcome of an emergency medical admission is uncertain. We aim to quantitate the relative effect of these factors on mortality.

      Methods

      We evaluated all emergency medical admission to our institution between 2002 and 2018. We derived an Acute Illness Severity Score (AISS) and Comorbidity Score from admission data and International Classification of Diseases codings. We employed a multivariable logistic regression model to relate both to 30-day in-hospital mortality.

      Results

      There were 113,807 admissions in 58,126 patients. Both AISS, Odds Ratio (OR) 4.4 (95%CI 3.5, 5.5), and Comorbidity Score, OR 1.91 (95%CI 1.67, 2.18), independently predicted 30-day in-hospital mortality. The two highest AISS risk groups encompassed 46.5% of admissions with predicted mortality of 5.9% (95%CI 5.7%, 6.1%) and 14.4% (95%CI 13.9%, 14.8%) respectively. Comorbidity Score >=10 occurred in 17.9% of admissions with a predicted mortality of 13.3%. AISS and Comorbidity Score interacted to adversely influence mortality; the threshold effect for Comorbidity Score was reduced at high levels of AISS.

      Conclusion

      High AISS and Comorbidity Scores were predictive of 30-day in-hospital mortality and relatively common in emergency medical admissions. There is a strong interaction between the two scores.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Langlands A.
        • Dowdle R.
        • Elliott A.
        • Gaddie J.
        • Graham A.
        • Johnson G.
        • et al.
        RCPE UK consensus statement on acute medicine, November 2008.
        Br J Hosp Med (Lond). 2009; 70: S6-S7
        • Asadollahi K.
        • Hastings I.M.
        • Beeching N.J.
        • Gill G.V.
        Laboratory risk factors for hospital mortality in acutely admitted patients.
        QJM. 2007; 100: 501-507
        • Froom P.
        • Shimoni Z.
        Prediction of hospital mortality rates by admission laboratory tests.
        Clin Chem. 2006; 52: 325-328
        • Silke B.
        • Kellett J.
        • Rooney T.
        • Bennett K.
        • O'Riordan D.
        An improved medical admissions risk system using multivariable fractional polynomial logistic regression modelling.
        Q J Med. 2010; 103: 23-32
        • Conway R.
        • Byrne D.
        • O'Riordan D.
        • Silke B.
        Patient risk profiling in acute medicine: the way forward?.
        QJM. 2015; 108: 689-696
        • Charlson M.E.
        • Pompei P.
        • Ales K.L.
        • MacKenzie C.R.
        A new method of classifying prognostic comorbidity in longitudinal studies: development and validation.
        J Chronic Dis. 1987; 40: 373-383
        • Chotirmall S.H.
        • Callaly E.
        • Lyons J.
        • O'Connell B.
        • Kelleher M.
        • Byrne D.
        • et al.
        Blood cultures in emergency medical admissions: a key patient cohort.
        Eur J Emerg Med. 2014;
        • Conway R.
        • Byrne D.
        • O'Riordan D.
        • Silke B.
        Emergency readmissions are substantially determined by acute illness severity and chronic debilitating illness: a single centre cohort study.
        Eur J Intern Med. 2015; 26: 12-17
      1. Merriam-Webster. Morbidity [cited 2018 8 May]. Available from:www.merriam-webster.com/dictionary/morbidity.

        • Barnett K.
        • Mercer S.
        • Norbury M.
        • Watt G.
        • Wyke S.
        • Guthrie B.
        Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study.
        Lancet. 2012; 380: 37-43
        • Agborsangaya C.B.
        • Lau D.
        • Lahtinen M.
        • Cooke T.
        • Johnson J.A.
        Multimorbidity prevalence and patterns across socioeconomic determinants: a cross-sectional survey.
        BMC Public Health. 2012; 12: 201
        • Conway R.
        • Byrne D.
        • O'Riordan D.
        • Silke B.
        Outcomes in acute medicine - Evidence from extended observations on readmissions, hospital length of stay and mortality outcomes.
        Eur J Intern Med. 2019; 66: 69-74
        • Rooney T.
        • Moloney E.D.
        • Bennett K.
        • O'Riordan D.
        • Silke B.
        Impact of an acute medical admission unit on hospital mortality: a 5-year prospective study.
        Qjm. 2008; 101: 457-465
        • Conway R.
        • O'Riordan D.
        • Silke B.
        Long-term outcome of an AMAU–a decade's experience.
        Q J Med. 2014; 107: 43-49
        • Conway R.
        • Byrne D.
        • Cournane S.
        • O'Riordan D.
        • Silke B.
        Fifteen-year outcomes of an acute medical admission unit.
        Ir J Med Sci. 2018; 187: 1097-1105
        • Beeknoo N.
        • Jones R.
        Factors influencing a & e attendance, admissions and waiting times at two London hospitals.
        Br J Med Med Res. 2016; 17: 1-29
        • O'Loughlin R.
        • Allwright S.
        • Barry J.
        • Kelly A.
        • Teljeur C.
        Using HIPE data as a research and planning tool: limitations and opportunities.
        Ir J Med Sci. 2005; 174 (discussion 52-7): 40-45
        • O'Callaghan A.
        • Colgan M.P.
        • McGuigan C.
        • Smyth F.
        • Haider N.
        • O'Neill S.
        • et al.
        A critical evaluation of HIPE data.
        Ir Med J. 2012; 105: 21-23
        • Kopelman P.G.
        • Sanderson A.J.
        Application of database systems in diabetes care.
        Med Inform (Lond). 1996; 21: 259-271
        • Courtney D.
        • Conway R.
        • Kavanagh J.
        • O'Riordan D.
        • Silke B.
        High-sensitivity troponin as an outcome predictor in acute medical admissions.
        Postgrad Med J. 2014; 90: 311-316
        • Chin J.L.
        • O'Dowd S.
        • Adnan W.A.
        • Bennett K.
        • O'Riordan D.
        • Mellotte G.J.
        • et al.
        Using the MDRD value as an outcome predictor in emergency medical admissions.
        Nephrol Dial Transpl. 2011; 26: 3155-3159
        • O'Sullivan E.
        • Callely E.
        • O'Riordan D.
        • Bennett K.
        • Silke B.
        Predicting outcomes in emergency medical admissions – role of laboratory data and co-morbidity.
        Acute Med. 2012; 2: 59-65
        • Silke B.
        • Kellett J.
        • Rooney T.
        • Bennett K.
        • O'Riordan D.
        An improved medical admissions risk system using multivariable fractional polynomial logistic regression modelling.
        QJM. 2010; 103: 23-32
        • Chotirmall S.H.
        • Picardo S.
        • Lyons J.
        • D'Alton M.
        • O'Riordan D.
        • Silke B.
        Disabling disease codes predict worse outcomes for acute medical admissions.
        Intern Med J. 2014; 44: 546-553
      2. R.J. Ozminkowski, R.M. Coffey, T.L. Mark, C.A. Neslusan, and J. Drabek, Private payers serving individuals with disabilities and chronic conditions 2000.

        • Tonelli M.
        • Wiebe N.
        • Fortin M.
        • Guthrie B.
        • Hemmelgarn B.R.
        • James M.T.
        • et al.
        Methods for identifying 30 chronic conditions: application to administrative data.
        BMC Med Inform Decis Mak. 2015; 15: 31
        • Quan H.
        • Sundararajan V.
        • Halfon P.
        • Fong A.
        • Burnand B.
        • Luthi J.C.
        • et al.
        Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data.
        Med Care. 2005; 43: 1130-1139
        • Royston P.
        • Reitz M.
        • Atzpodien J.
        An approach to estimating prognosis using fractional polynomials in metastatic renal carcinoma.
        Br J Cancer. 2006; 94: 1785-1788
        • Prytherch D.R.
        • Sirl J.S.
        • Schmidt P.
        • Featherstone P.I.
        • Weaver P.C.
        • Smith G.B.
        The use of routine laboratory data to predict in-hospital death in medical admissions.
        Resuscitation. 2005; 66: 203-207
        • Hucker T.R.
        • Mitchell G.P.
        • Blake L.D.
        • Cheek E.
        • Bewick V.
        • Grocutt M.
        • et al.
        Identifying the sick: can biochemical measurements be used to aid decision making on presentation to the accident and emergency department.
        Br J Anaesth. 2005; 94: 735-741
        • van Walraven C.
        • Austin P.C.
        • Jennings A.
        • Quan H.
        • Forster A.J.
        A modification of the elixhauser comorbidity measures into a point system for hospital death using administrative data.
        Med Care. 2009; 47: 626-633
        • Diederichs C.
        • Berger K.
        • Bartels D.
        The measurement of multiple chronic diseases–a systematic review on existing multimorbidity indices.
        J Gerontol A Biol Sci Med Sci. 2011; 66: 301-311
        • Cournane S.
        • Byrne D.
        • O'Riordan D.
        • Fitzgerald B.
        • Silke B.
        Chronic disabling disease – Impact on outcomes and costs in emergency medical admissions.
        Q J Med. 2014; : 1-29