Advertisement

Therapeutic strategies for virus-negative myocarditis: a comprehensive review

      Highlights

      • Virus-negative myocarditis(VNM) is an inflammatory disease with diverse etiologies.
      • A shared immune-mediated pathogenic process leads to inflammation and tissue damage.
      • Therapies effectively curbing myocardial inflammation can improve patient's outcome.
      • We reviewed current immune-modulatory opportunities to treat VNM.
      • Promising therapies could pave the way to future strategies for VNM.

      Abstract

      Virus-negative or autoimmune myocarditis(VNM) is an inflammatory disease affecting the myocardium that may occur as a distinct disease with exclusive cardiac involvement, or in the context of systemic autoimmune or inflammatory disorders. The pathogenesis of VNM involves both innate and acquired immunity and is not completely elucidated: an early immune-mediated pathogenic process lead to subacute and chronic stages and eventually results in tissue remodeling, fibrosis, contractile dysfunction, dilated cardiomyopathy and arrhythmic burden, accounting for a dismal prognosis. Treatment interventions effectively curbing the acute inflammatory process at an early stage can prevent late cardiac remodeling and improve patient's outcome. The mainstay of treatment of VNM remains symptomatic therapy of heart failure and arrhythmia, while the use of immunosuppressive treatments has long been considered controversial until recently, and strategies effectively targeting the inflammatory and immune-mediated substrate of the disease remain elusive. Only steroids and azathioprine have been tested in clinical trials, and nowadays represent the therapy of choice. A substantial proportion of patients are resistant to first line strategies, suggesting that some critical inflammatory mechanisms are not responsive to conventional immunosuppression with steroids and azathioprine, or experience drug-related adverse events. Thus, second-line targeted therapeutic strategies to treat VNM are eagerly awaited.
      Recent data on the pathogenic mechanisms underlying myocardial inflammation are paving the way to novel, promising treatment strategies for myocarditis, which could reformulate future treatment strategies for VNM.
      In this review, we summarize the current therapeutic opportunities, beyond corticosteroids, to treat VNM, including conventional and biologic immunosuppressive drugs and cytokine blocking agents.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Richardson P
        • McKenna W
        • Bristow M
        • Maisch B
        • Mautner B
        • O'Connell J
        • et al.
        Report of the 1995 World Health Organization/International Society and Federation of Cardiology task force on the definition and classification of cardiomyopathies.
        Circulation. 1996; 93 (Mar 1): 841-842https://doi.org/10.1161/01.CIR.93.5.841
        • Jefferies JL
        • Towbin JA
        Dilated cardiomyopathy.
        Lancet. 2010; 375 (Feb 27): 752-762https://doi.org/10.1016/S0140-6736(09)62023-7
        • Aretz HT
        • Billingham ME
        • Edwards WD
        • Factor SM
        • Fallon JT
        • Fenoglio JJ Jr
        • et al.
        Myocarditis. A histopathologic definition and classification.
        Am J Cardiovasc Pathol. 1987; 1 (Jan): 3-14
        • Magnani JW
        • Dec GW
        Myocarditis: current trends in diagnosis and treatment.
        Circulation. 2006; 113 (Feb 14): 876-890https://doi.org/10.1161/CIRCULATIONAHA.105.584532
        • Caforio AL
        • Marcolongo R
        • Jahns R
        • Fu M
        • Felix SB
        • Iliceto S
        Immune-mediated and autoimmune myocarditis: clinical presentation, diagnosis and management.
        Heart Fail Rev. 2013; 18 (Nov): 715-732https://doi.org/10.1007/s10741-012-9364-5
        • Rose NR
        Myocarditis: infection versus autoimmunity.
        J Clin Immunol. 2009; 29 (Nov): 730-737https://doi.org/10.1007/s10875-009-9339-z
        • Comarmond C
        • Cacoub P.
        Myocarditis in auto-immune or auto-inflammatory diseases.
        Autoimmun Rev. 2017; 16 (Aug): 811-816https://doi.org/10.1016/j.autrev.2017.05.021
        • De Luca G
        • Bosello S
        • Leone AM
        • Gabrielli F
        • Pelargonio G
        • Inzani F
        • et al.
        Life-threatening arrhythmias in a scleroderma patient: the role of myocardial inflammation in arrhythmic outburst.
        Scand J Rheumatol. 2017; 46 (Jan): 78-80https://doi.org/10.3109/03009742.2016.1157626
        • De Luca G
        • Campochiaro C
        • Sartorelli S
        • Franchini S
        • Candela C
        • Peretto G
        • et al.
        Unexpected acute lymphocytic virus-negative myocarditis in a patient with limited cutaneous systemic sclerosis: a case report.
        Scand J Rheumatol. 2019; 48 (Mar): 166-167https://doi.org/10.1080/03009742.2018.1493744
        • Bosello S
        • De Luca G
        • Ferraccioli G
        Troponin in stable ischemic heart disease and diabetes.
        N Engl J Med. 2015; 373 (Nov 12): 1977-1978https://doi.org/10.1056/NEJMc1511645
        • Pieroni M
        • De Santis M
        • Zizzo G
        • Bosello S
        • Smaldone C
        • Campioni M
        • et al.
        Recognizing and treating myocarditis in recent- onset systemic sclerosis heart disease: Potential utility of immunosuppressive therapy in cardiac damage progression.
        Semin Arthritis Rheum. 2014; 43 (Feb): 526-535https://doi.org/10.1016/j.semarthrit.2013.07.006
        • De Luca G
        • Bosello S
        • Gabrielli FA
        • Berardi G
        • Parisi F
        • Rucco M
        • et al.
        Prognostic role of ventricular ectopic beats in systemic sclerosis: a prospective cohort study shows ECG indexes predicting the worse outcome.
        PLoS One. 2016; 11 (Apr 21)e0153012https://doi.org/10.1371/journal.pone.0153012
        • Bosello S
        • De Luca G
        • Berardi G
        • Canestrari G
        • de Waure C
        • Gabrielli FA
        • et al.
        Cardiac troponin T and NT-proBNP as diagnostic and prognostic biomarkers of primary cardiac involvement and disease severity in systemic sclerosis: a prospective study.
        Eur J Intern Med. 2019; 60 (Feb): 46-53https://doi.org/10.1016/j.ejim.2018.10.013
        • De Luca G
        • Bosello SL
        • Canestrari G
        • Cavalli G
        • Dagna L
        • Ferraccioli G
        QTc interval prolongation in Systemic Sclerosis: correlations with clinical variables and arrhythmic risk.
        Int J Cardiol. 2017; 239 (Jul 15): 33https://doi.org/10.1016/j.ijcard.2017.03.088
        • Peretto G
        • Sala S
        • De Luca G
        • Campochiaro C
        • Sartorelli S
        • Cappelletti AM
        • et al.
        Impact of systemic immune-mediated diseases on clinical features and prognosis of patients with biopsy-proved myocarditis.
        Int J Cardiol. 2019; 280 (Apr 1): 110-116https://doi.org/10.1016/j.ijcard.2018.11.104
        • Sartorelli S
        • De Luca G
        • Campochiaro C
        • Peretto G
        • Sala S
        • Esposito A
        • et al.
        Successful use of sirolimus in a patient with cardiac microangiopathy in primary antiphospholipid syndrome.
        Scand J Rheumatol. 2019; (Feb 22): 1-2https://doi.org/10.1080/03009742.2019.1574022
        • De Luca G
        • Campochiaro C
        • Sartorelli S
        • Peretto G
        • Sala S
        • Palmisano A
        • et al.
        Efficacy and safety of mycophenolate mofetil in patients with virus-negative lymphocytic myocarditis: a prospective cohort study.
        J Autoimmun. 2020; 106 (Jan)102330https://doi.org/10.1016/j.jaut.2019.102330
        • Campochiaro C
        • De Luca G
        • De Santis M
        Anti-Ku syndrome with elevated CK: association with myocardial involvement in systemic sclerosis.
        Ann Rheum Dis. 2019; (annrheumdis-2019-216070)https://doi.org/10.1136/annrheumdis-2019-216070
        • De Luca G
        • Campochiaro C
        • De Santis M
        • Sartorelli S
        • Peretto G
        • Sala S
        • et al.
        Systemic sclerosis myocarditis has unique clinical, histological and prognostic features: a comparative histological analysis.
        Rheumatology (Oxford). 2020; (kez658)https://doi.org/10.1093/rheumatology/kez658
        • Mahmood SS
        • Fradley MG
        • Cohen JV
        • et al.
        Myocarditis in patients treated with immune checkpoint inhibitors.
        J Am Coll Cardiol. 2018; 71: 1755-1764https://doi.org/10.1016/j.jacc.2018.02.037
        • Campochiaro C
        • De Luca G
        • Cavalli G
        Letter by Campochiaro et al regarding article, "Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity.
        Circulation. 2018; 137: 2421-2422https://doi.org/10.1161/CIRCULATIONAHA.117.033305
        • Bock CT
        • Klingel K
        • Kandolf R
        Human parvovirus B19-associated myocarditis.
        N Engl J Med. 2010; 362 (Apr 1): 1248-1249https://doi.org/10.1056/NEJMc0911362
        • Root-Bernstein R
        • Fairweather D.
        Unresolved issues in theories of autoimmune disease using myocarditis as a framework.
        J Theor Biol. 2015; 375 (Jun 21): 101-123https://doi.org/10.1016/j.jtbi.2014.11.022
        • Caforio AL
        • Pankuweit S
        • Arbustini E
        • Basso C
        • Gimeno-Blanes J
        • Felix SB
        • et al.
        European society of cardiology working group on myocardial and pericardial diseases. current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European society of cardiology working group on myocardial and pericardial diseases.
        Eur Heart J. 2013; 34 (Sep2648a-2648d): 2636-2648https://doi.org/10.1093/eurheartj/eht210
        • Pollack A
        • Kontorovich AR
        • Fuster V
        • Dec GW
        Viral myocarditis – diagnosis, treatment options, and current controversies.
        Nat Rev Cardiol. 2015; 12 (Nov): 670-680https://doi.org/10.1038/nrcardio.2015.108
        • Fabre A
        • Sheppard MN.
        Sudden adult death syndrome and other nonischaemic causes of sudden cardiac death.
        Heart. 2006; 92 (Mar): 316-320https://doi.org/10.1136/hrt.2004.045518
        • Peretto G
        • Sala S
        • Rizzo S
        • De Luca G
        • Campochiaro C
        • Sartorelli S
        • et al.
        Arrhythmias in myocarditis: state of the art.
        Heart Rhythm. 2019; 16 (May): 793-801https://doi.org/10.1016/j.hrthm.2018.11.024
        • Peretto G
        • Sala S
        • Rizzo S
        • et al.
        Ventricular arrhythmias in myocarditis: characterization and relationships with myocardial inflammation.
        J Am Coll Cardiol. 2020; 75: 1046-1057https://doi.org/10.1016/j.jacc.2020.01.036
        • Mason JW
        • O'Connell JB
        • Herskowitz A
        • Rose NR
        • McManus BM
        • Billingham ME
        • et al.
        A clinical trial of immunosuppressive therapy for myocarditis. The myocarditis treatment trial investigators.
        N Engl J Med. 1995; 333 (Aug 3): 269-275https://doi.org/10.1056/NEJM199508033330501
        • Frustaci A
        • Gentiloni N
        • Chimenti C
        • Natale L
        • Gasbarrini G
        • Maseri A
        Necrotizing myocardial vasculitis in Churg-Strauss syndrome: clinicohistologic evaluation of steroids and immunosuppressive therapy.
        Chest. 1998; 114 (Nov): 1484-1489https://doi.org/10.1378/chest.114.5.1484
        • Tan JL
        • Fong HK
        • Birati EY
        • Han Y
        Cardiac sarcoidosis.
        Am J Cardiol. 2019; 123 (Feb 1): 513-522https://doi.org/10.1016/j.amjcard.2018.10.021
        • Cooper Jr, LT
        • GJ Berry
        • Shabetai R
        Idiopathic giant-cell myocarditis: natural history and treatment: multicenter giant cell myocardi- tis study group investigators.
        N Engl J Med. 1997; 336 (Jun 26): 1860-1866https://doi.org/10.1056/NEJM199706263362603
        • Priori SG
        • Blomström-Lundqvist C
        • Mazzanti A
        • Blom N
        • Borggrefe M
        • Camm J
        • et al.
        Task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European society of cardiology (ESC). 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the european society of cardiology (ESC) endorsed by: association for european paediatric and congenital cardiology (AEPC).
        Europace. 2015; 17: 1601-1687https://doi.org/10.1093/europace/euv319
        • Ponikowski P
        • Voors AA
        • Anker SD
        • Bueno H
        • Cleland JG
        • Coats AJ
        • Authors/Task Force Members; Document Reviewers
        ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC.
        Eur J Heart Fail. 2016; 18 (2016 Aug): 891-975https://doi.org/10.1002/ejhf.592
        • Frustaci A
        • Russo MA
        • Chimenti C
        Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study.
        Eur Heart J. 2009; 30 (Aug): 1995-2002https://doi.org/10.1093/eurheartj/ehp249
        • Frustaci A
        • Chimenti C
        • Calabrese F
        • Pieroni M
        • Thiene G
        • Maseri A
        Immunosuppressive therapy for active lymphocytic myocarditis: virological and immunologic profile of responders versus nonresponders.
        Circulation. 2003; 107 (Feb 18): 857-863
        • Cooper Jr, LT
        • Hare JM
        • Tazelaar HD
        • Edwards WD
        • Starling RC
        • Deng MC
        • et al.
        Giant cell myocarditis treatment trial investigators. Usefulness of immunosuppression for giant cell myocarditis.
        Am J Cardiol. 2008; 102 (Dec 1): 1535-1539https://doi.org/10.1016/j.amjcard.2008.07.041
        • Escher F
        • Kühl U
        • Lassner D
        • Poller W
        • Westermann D
        • Pieske B
        • et al.
        Long-term outcome of patients with virus-negative chronic myocarditis or inflammatory cardiomyopathy after immunosuppressive therapy.
        Clin Res Cardiol. 2016; 105 (Dec): 1011-1020https://doi.org/10.1007/s00392-016-1011-z
        • Dieval C
        • Deligny C
        • Meyer A
        • Cluzel P
        • Champtiaux N
        • Lefevre G
        • et al.
        Myocarditis in patients with antisynthetase syndrome: prevalence, presentation, and outcomes.
        Medicine (Baltimore). 2015; 94 (Jul): e798https://doi.org/10.1097/MD.0000000000000798
        • Wang CR
        • Tsai YS
        • Li WT
        Lupus myocarditis receiving the rituximab therapy—a monocentric retrospective study.
        Clin Rheumatol. 2018; 37 (Jun): 1701-1707https://doi.org/10.1007/s10067-017-3971-4
        • Tanwani J
        • Tselios K
        • Gladman DD
        • Su J
        • Urowitz MB
        Lupus myocarditis: a single center experience and a comparative analysis of observational cohort studies.
        Lupus. 2018; 27 (Jul): 1296-1302https://doi.org/10.1177/0961203318770018
        • Zhang Z
        • Zhao P
        • Li A
        • Lv X
        • Gao Y
        • Sun H
        • et al.
        Effects of methotrexate on plasma cytokines and cardiac remodeling and function in postmyocarditis rats.
        Mediators Inflamm. 2009; 2009389720https://doi.org/10.1155/2009/389720
        • Tian H
        • Cronstein BN.
        Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis.
        Bull NYU Hosp Jt Dis. 2007; 65: 168-173
        • Li J
        • Wang Y
        • Wang Y
        • Wen X
        • Ma XN
        • Chen W
        • et al.
        Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction.
        J Mol Cell Cardiol. 2015; 86 (Sep): 62-74https://doi.org/10.1016/j.yjmcc.2015.07.010
        • Gerfaud-Valentin M
        • Sève P
        • Iwaz J
        • Gagnard A
        • Broussolle C
        • Durieu I
        • et al.
        Myocarditis in adult-onset still disease.
        Medicine (Baltimore). 2014; 93 (Oct): 280-289https://doi.org/10.1097/MD.0000000000000112
        • Ballul T
        • Borie R
        • Crestani B
        • Daugas E
        • Descamps V
        • Dieude P
        • et al.
        Treatment of cardiac sarcoidosis: a comparative study of steroids and steroids plus immunosuppressive drugs.
        Int J Cardiol. 2019; 276 (Feb 1): 208-211https://doi.org/10.1016/j.ijcard.2018.11.131
        • Campochiaro C
        • De Luca G
        • Sartorelli S
        • Tomelleri A
        • Esposito A
        • Candela C
        • et al.
        Efficacy and safety of methotrexate for the treatment of autoimmune virus-negative myocarditis: a case series.
        J Clin Rheumatol. 2018; (Sep 18)https://doi.org/10.1097/RHU.0000000000000897
        • Thomas G
        • Cohen Aubart F
        • Chiche L
        • Haroche J
        • Hié M
        • Hervier B
        • et al.
        Lupus myocarditis: initial presentation and longterm outcomes in a multicentric series of 29 patients.
        J Rheumatol. 2017; 44 (Jan): 24-32https://doi.org/10.3899/jrheum.160493
        • Tschöpe C
        • Van Linthout S
        • Spillmann F
        • Posch MG
        • Reinke P
        • Volk HD
        • et al.
        Targeting CD20+ B-lymphocytes in inflammatory dilated cardiomyopathy with rituximab improves clinical course: a case series.
        Eur Heart J Case Rep. 2019; 3 (Sep 1pii: ytz131)https://doi.org/10.1093/ehjcr/ytz131
        • Bracamonte-Baran W
        • Čiháková D.
        Cardiac autoimmunity: myocarditis.
        Adv Exp Med Biol. 2017; 1003: 187-221https://doi.org/10.1007/978-3-319-57613-8_10
        • Huang X
        • Sun Y
        • Su G
        • Li Y
        • Shuai X
        Intravenous immunoglobulin therapy for acute myocarditis in children and adults.
        Int Heart J. 2019; 60 (Mar 20): 359-365https://doi.org/10.1536/ihj.18-299
        • Charhon N
        • Bernard C
        • Richard JC
        • Cordel N
        • Leboucher G
        • Broussolle C
        • et al.
        Off-label use of intravenous immunoglobulin therapy in the treatment of lupus myocarditis: Two case reports and literature review.
        Rev Med Interne. 2017; 38 (Mar): 204-209https://doi.org/10.1016/j.revmed.2016.05.005
      1. Cacciatore C, Riviere S, Cohen A, Gatfosse M, Ederhy S, Fain O, et al. Systemic sclerosis: Efficacy of intravenous immunoglobulins in severe cardiac involvement?. Rev Med Interne. 2018 Jul;39(7):594-6. 10.1016/j.revmed.2017.12.013.

        • Nussinovitch U
        • Shoenfeld Y.
        Intravenous immunoglobulin - indications and mechanisms in cardiovascular diseases.
        Autoimmun Rev. 2008; 7 (Jun): 445-452https://doi.org/10.1016/j.autrev.2008.04.001
        • Stack J
        • McLaughlin P
        • Sinnot C
        • Henry M
        • MacEneaney P
        • Eltahir A
        • et al.
        Successful control of scleroderma myocarditis using a combination of cyclophosphamide and methylprednisolone.
        Scand J Rheumatol. 2010; 39 (Aug): 349-350https://doi.org/10.3109/03009740903493741
        • Azzam ZS
        • Maza I
        • Zeidan-Shwiri T
        • Lorber M
        Cyclophosphamide restores heart function in a patient with lupus myocarditis.
        Isr Med Assoc J. 2005; 7 (Apr): 266-267
        • Chan YK
        • Li EK
        • Tam LS
        • Chow LT
        • Ng HK
        Intravenous cyclophosphamide improves cardiac dysfunction in lupus myocarditis.
        Scand J Rheumatol. 2003; 32: 306-308https://doi.org/10.1080/03009740310003956
        • Hammann C
        • Genton CY
        • Delabays A
        • Bischoff Delaloye A
        • Bogousslavsky J
        • Spertini F
        Myocarditis of mixed connective tissue disease: favourable outcome after intravenous pulsed cyclophosphamide.
        Clin Rheumatol. 1999; 18: 85-87https://doi.org/10.1007/s100670050062
        • Jeong HC
        • Kim KH
        • Cho JY
        • Song JE
        • Yoon HJ
        • Seon HJ
        • et al.
        Cardiac involvement of churg-strauss syndrome as a reversible cause of dilated cardiomyopathy.
        J Cardiovasc Ultrasound. 2015; 23 (Mar): 40-43https://doi.org/10.4250/jcu.2015.23.1.40
        • Bechman K
        • Gopalan D
        • Nihoyannopoulos P
        • Mason JC
        A cohort study reveals myocarditis to be a rare and life-threatening presentation of large vessel vasculitis.
        Semin Arthritis Rheum. 2017; 47 (Oct): 241-246https://doi.org/10.1016/j.semarthrit.2017.03.023
        • Yates M
        • Watts RA
        • Bajema IM
        • Cid MC
        • Crestani B
        • Hauser T
        • et al.
        EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis.
        Ann Rheum Dis. 2016; 75 (SepErratum in: Ann Rheum Dis. 2017 Aug;76(8):1480): 1583-1594https://doi.org/10.1136/annrheumdis-2016-209133
        • Kurauchi K
        • Nishikawa T
        • Miyahara E
        • Okamoto Y
        • Kawano Y
        Role of metabolites of cyclophosphamide in cardiotoxicity.
        BMC Res Notes. 2017; 10 (Aug 14): 406https://doi.org/10.1186/s13104-017-2726-2
        • Akita T
        • Mori S
        • Onishi A
        • Hara S
        • Yamada H
        • Nagasawa A
        • et al.
        Successful triple combination immunosuppressive therapy with prednisolone, cyclosporine, and mycophenolate mofetil to treat recurrent giant cell myocarditis.
        Intern Med. 2019; 58 (Jul 15): 2035-2039https://doi.org/10.2169/internalmedicine.2471-18
      2. De Luca G, Cavalli G, Campochiaro C, Tresoldi M, Dagna L. Myocarditis: an interleukin-1- mediated disease?. Front. Immunol. 9:1335. 10.3389/fimmu.2018.01335.

        • Toldo S
        • Kannan H
        • Bussani R
        • Anzini M
        • Sonnino C
        • Sinagra G
        • et al.
        Formation of the inflammasome in acute myocarditis.
        Int J Cardiol. 2014; 171 (Feb 15): e119-e121https://doi.org/10.1016/j.ijcard.2013.12.137
        • Abbate A.
        The heart on fire: inflammasome and cardiomyopathy.
        Exp Physiol. 2013; 98 (Feb): 385https://doi.org/10.1113/expphysiol.2012.069021
        • Kumar A
        • Thota V
        • Dee L
        • Olson J
        • Uretz E
        • Parrillo JE
        Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum.
        J Exp Med. 1996; 183 (Mar 1): 949-958https://doi.org/10.1084/jem.183.3.949
        • Van Tassell BW
        • Toldo S
        • Mezzaroma E
        • Abbate A
        Targeting interleukin- 1 in heart disease.
        Circulation. 2013; 128 (Oct 22): 1910-1923https://doi.org/10.1161/CIRCULATIONAHA.113.003199
        • Chung MK
        • Gulick TS
        • Rotondo RE
        • Schreiner GF
        • Lange LG
        Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP in rat cardiacmyocytes. Impairment of signal transduction.
        Circ Res. 1990; 67 (Sep): 753-763https://doi.org/10.1161/01.RES.67.3.753
        • Liu SJ
        • Zhou W
        • Kennedy RH
        Suppression of beta-adrenergic responsiveness of L-type Ca2+ current by IL-1beta in rat ventricular myocytes.
        Am J Physiol. 1999; 276 (Jan): H141-H148https://doi.org/10.1152/ajpheart.1999.276.1.H141
        • Schreur KD
        • Liu S.
        Involvement of ceramide in inhibitory effect of IL-1 beta on L-type Ca2+ current in adult rat ventricular myocytes.
        Am J Physiol. 1997; 272 (Jun): H2591-H2598https://doi.org/10.1152/ajpheart.1997.272.6.H2591
        • Liu S
        • Schreur KD.
        G protein-mediated suppression of L-type Ca2+ current by interleukin-1 beta in cultured rat ventricular myocytes.
        Am J Physiol. 1995; 268 (Feb): C339-C349https://doi.org/10.1152/ajpcell.1995.268.2.C339
        • Combes A
        • Frye CS
        • Lemster BH
        • Brooks SS
        • Watkins SC
        • Feldman AM
        • et al.
        Chronic exposure to interleukin 1beta induces a delayed and reversible alteration in excitation-contraction coupling of cultured cardiomyocytes.
        Pflugers Arch. 2002; 445: 246-256
        • Buckley LF
        • Viscusi MM
        • Van Tassell BW
        • Abbate A
        Interleukin-1 blockade for the treatment of pericarditis.
        Eur Heart J Cardiovasc Pharmacother. 2018; 4 (Jan 1): 46-53https://doi.org/10.1093/ehjcvp/pvx018
        • Van Tassell BW
        • Arena RA
        • Toldo S
        • Mezzaroma E
        • Azam T
        • Seropian IM
        • et al.
        Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure.
        PLoS One. 2012; 7: e33438https://doi.org/10.1371/journal.pone.0033438
        • Van Tassell BW
        • Arena R
        • Biondi-Zoccai G
        • Canada JM
        • Oddi C
        • Abouzaki NA
        • et al.
        Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study).
        Am J Cardiol. 2014; 113 (Jan 15): 321-327https://doi.org/10.1016/j.amjcard.2013.08.047
        • Van Tassell BW
        • Buckley LF
        • Carbone S
        • Trankle CR
        • Canada JM
        • Dixon DL
        • et al.
        Interleukin-1 blockade in heart failure with preserved ejection fraction: rationale and design of the diastolic heart failure anakinra response trial 2 (D-HART2).
        Clin Cardiol. 2017; 40 (Sep): 626-632https://doi.org/10.1002/clc.22719
        • Van Tassell BW
        • Abouzaki NA
        • Oddi Erdle C
        • Carbone S
        • Trankle CR
        • Melchior RD
        • et al.
        Interleukin-1 blockade in acute decompensated heart failure: a randomized, double-blinded, placebo-controlled pilot study.
        J Cardiovasc Pharmacol. 2016; 67 (Jun): 544-551https://doi.org/10.1097/FJC.0000000000000378
        • Ikonomidis I
        • Lekakis JP
        • Nikolaou M
        • Paraskevaidis I
        • Andreadou I
        • Kaplanoglou T
        • et al.
        Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis.
        Circulation. 2008; 117 (May 20): 2662-2669https://doi.org/10.1161/CIRCULATIONAHA.107.731877
        • Cavalli G
        • Foppoli M
        • Cabrini L
        • Dinarello CA
        • Tresoldi M
        • Dagna L
        Interleukin-1 receptor blockade rescues myocarditis-associated end-stage heart failure.
        Front Immunol. 2017; 8 (Feb 9): 131https://doi.org/10.3389/fimmu.2017.00131
        • Cavalli G
        • Pappalardo F
        • Mangieri A
        • Dinarello CA
        • Dagna L
        • Tresoldi M
        Treating life-threatening myocarditis by blocking interleukin-1.
        Crit Care Med. 2016; 44: e751-e754https://doi.org/10.1097/CCM.0000000000001654
        • Parisi F
        • Paglionico A
        • Varriano V
        • Ferraccioli G
        • Gremese E
        Refractory adult-onset Still disease complicated by macrophage activation syndrome and acute myocarditis: a case report treated with high doses (8 mg/kg/d) of anakinra.
        Medicine (Baltimore). 2017; 96 (Jun): e6656https://doi.org/10.1097/MD.0000000000006656
        • Tomelleri A
        • Cavalli G
        • De Luca G
        • Campochiaro C
        • D'Aliberti T
        • Tresoldi M
        • et al.
        Treating heart inflammation with interleukin-1 blockade in a case of erdheim–chester disease.
        Front Immunol. 2018; 9 (Jun 1): 1233https://doi.org/10.3389/fimmu.2018.01233
        • Cavalli G
        • De Luca G
        • Dagna L
        Advances in potential targeted therapies for erdheim-chester disease.
        Expert Opin Orphan Drugs:. 2017; 5: 253-260https://doi.org/10.1080/21678707.2017.1285226
        • De Luca G
        • Campochiaro C
        • Dinarello CA
        • Dagna L
        • Cavalli G
        Treatment of dilated cardiomyopathy with interleukin-1 inhibition.
        Ann Intern Med. 2018; 169 (Dec 4): 819-820https://doi.org/10.7326/L18-0315
        • De Benedetti F
        • Gattorno M
        • Anton J
        • et al.
        Canakinumab for the treatment of autoinflammatory recurrent fever syndromes.
        N Engl J Med. 2018; 378: 1908-1919https://doi.org/10.1056/NEJMoa1706314
        • Cavalli G
        • Tomelleri A
        • De Luca G
        • Campochiaro C
        • Dinarello CA
        • Baldissera E
        • et al.
        Efficacy of canakinumab as first-line biologic agent in adult-onset Still's disease.
        Arthritis Res Ther. 2019; 21 (Feb 13): 54https://doi.org/10.1186/s13075-019-1843-9
        • Schlesinger N
        • Alten RE
        • Bardin T
        • et al.
        Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions.
        Ann Rheum Dis. 2012; 71: 1839-1848https://doi.org/10.1136/annrheumdis-2011-200908
        • Ridker PM
        • Everett BM
        • Thuren T
        • et al.
        Antiinflammatory therapy with canakinumab for atherosclerotic disease.
        N Engl J Med. 2017; 377: 1119-1131https://doi.org/10.1056/NEJMoa1707914
        • Tsutamoto T
        • Hisanaga T
        • Wada A
        • Maeda K
        • Ohnishi M
        • Fukai D
        • et al.
        Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure.
        J Am Coll Cardiol. 1998; 31: 391-398https://doi.org/10.1016/S0735- 1097(97)00494-4
        • Kanda T
        • Takahashi T.
        Interleukin-6 and cardiovascular diseases.
        Jpn Heart J. 2004; 45 (Mar): 183-193https://doi.org/10.1536/jhj.45.183
        • Savvatis K
        • Müller I
        • Fröhlich M
        • Pappritz K
        • Zietsch C
        • Hamdani N
        • et al.
        Interleukin-6 receptor inhibition modulates the immune reaction and restores titin phosphorylation in experimental myocarditis.
        Basic Res Cardiol. 2014; 109: 449https://doi.org/10.1007/s00395-014-0449-2
        • Savage E
        • Wazir T
        • Drake M
        • Cuthbert R
        • Wright G
        Fulminant myocarditis and macrophage activation syndrome secondary to adult-onset Still's disease successfully treated with tocilizumab.
        Rheumatology (Oxford). 2014; 53 (Jul): 1352-1353https://doi.org/10.1093/rheumatology/keu019
        • Ma F
        • Li Y
        • Jia L
        • Han Y
        • Cheng J
        • Li H
        • et al.
        Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/Smad activation and cardiac fibrosis induced by angiotensin II.
        PLoS One. 2012; 7: e35144https://doi.org/10.1371/journal.pone.0035144
        • Zhang Y
        • Wang JH
        • Zhang YY
        • Wang YZ
        • Wang J
        • Zhao Y
        • et al.
        Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways.
        Sci Rep. 2016; 6 (Mar 14): 23010https://doi.org/10.1038/srep23010
        • Campochiaro C
        • De Luca G
        • Tomelleri A
        • Sartorelli S
        • Peretto G
        • Sala S
        • et al.
        Tocilizumab for the treatment of myocardial inflammation shown by cardiac magnetic resonance: report of two cases and rationale for its therapeutic use.
        J Clin Rheumatol. 2019; (Nov 19)https://doi.org/10.1097/RHU.0000000000001194
        • Shima Y.
        The benefits and prospects of interleukin-6 inhibitor systemic sclerosis.
        Mod Rheumatol. 2019; 29 (Mar): 294-301https://doi.org/10.1080/14397595.2018.1559909
        • Abdel-Magied RA
        • Kamel SR
        • Said AF
        • Ali HM
        • Abdel Gawad EA
        • Moussa MM
        Serum interleukin-6 in systemic sclerosis and its correlation with disease parameters and cardiopulmonary involvement.
        Sarcoidosis Vasc Diffuse Lung Dis. 2016; 33 (Dec 23): 321-330
        • Taniguchi T
        • Asano Y
        • Fukasawa T
        • Yoshizaki A
        • Sato S
        Critical contribution of the interleukin-6/signal transducer and activator of transcription 3 axis to vasculopathy associated with systemic sclerosis.
        J Dermatol. 2017; 44 (Aug): 967-971https://doi.org/10.1111/1346-8138.13827
        • Khanna D
        • Denton CP
        • Lin CJF
        • van Laar JM
        • Frech TM
        • Anderson ME
        • et al.
        Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: results from the open-label period of a phase II randomised controlled trial(faSScinate).
        Ann Rheum Dis. 2018; 77 (Feb): 212-220https://doi.org/10.1136/annrheumdis-2017-211682
        • Bosello S
        • De Santis M
        • Lama G
        • Spanò C
        • Angelucci C
        • Tolusso B
        • et al.
        B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial.
        Arthritis Res Ther. 2010; 12: R54https://doi.org/10.1186/ar2965
        • De Luca G
        • Bosello SL
        • Berardi G
        • Rucco M
        • Canestrari G
        • Correra M
        • et al.
        Tumour-associated antigens in systemic sclerosis patients with interstitial lung disease: association with lung involvement and cancer risk.
        Rheumatology (Oxford). 2015; 54: 1991-1999https://doi.org/10.1093/rheumatology/kev204
        • Schirmer M
        • Muratore F
        • Salvarani C
        Tocilizumab for the treatment of giant cell arteritis.
        Expert Rev Clin Immunol. 2018; 14 (May): 339-349https://doi.org/10.1080/1744666X.2018.1468251
        • Mariano VJ
        • Frishman WH.
        Tocilizumab in giant cell arteritis.
        Cardiol Rev. 2018; 26 (Nov/Dec): 321-330https://doi.org/10.1097/CRD.0000000000000204
        • Brahmer JR
        • Lacchetti C
        • Schneider BJ
        • et al.
        Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: american society of clinical oncology clinical practice guideline.
        J Clin Oncol. 2018; 36: 1714-1768https://doi.org/10.1200/JCO.2017.77.6385
        • Herrmann J.
        Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia [published online ahead of print, 2020 Mar 30].
        Nat Rev Cardiol. 2020; (10.1038/s41569-020-0348-1)https://doi.org/10.1038/s41569-020-0348-1
        • Thompson JA
        • Schneider BJ
        • Brahmer J
        • et al.
        Management of immunotherapy-related toxicities, version 1.2019.
        J Natl Compr Canc Netw. 2019; 17: 255-289https://doi.org/10.6004/jnccn.2019.0013
        • Heinzerling L
        • Ott PA
        • Hodi FS
        • et al.
        Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy.
        J Immunother Cancer. 2016; 4: 50https://doi.org/10.1186/s40425-016-0152-y
        • Johnson DB
        • Balko JM
        • Compton ML
        • et al.
        Fulminant myocarditis with combination immune checkpoint blockade.
        N Engl J Med. 2016; 375: 1749-1755https://doi.org/10.1056/NEJMoa1609214
        • Kimura T
        • Fukushima S
        • Miyashita A
        • et al.
        Myasthenic crisis and polymyositis induced by one dose of nivolumab.
        Cancer Sci. 2016; 107: 1055-1058https://doi.org/10.1111/cas.12961
        • Semper H
        • Muehlberg F
        • Schulz-Menger J
        • Allewelt M
        • Grohé C
        Drug-induced myocarditis after nivolumab treatment in a patient with PDL1- negative squamous cell carcinoma of the lung.
        Lung Cancer. 2016; 99: 117-119https://doi.org/10.1016/j.lungcan.2016.06.025
        • Tadokoro T
        • Keshino E
        • Makiyama A
        • et al.
        Acute lymphocytic myocarditis with anti-PD-1 antibody nivolumab.
        Circ Heart Fail. 2016; 9e003514https://doi.org/10.1161/CIRCHEARTFAILURE.116.003514
        • Haanen JBAG
        • Carbonnel F
        • Robert C
        • et al.
        Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.
        Ann Oncol. 2018; 29 (iv264–iv266)https://doi.org/10.1093/annonc/mdy162
        • Escudier M
        • Cautela J
        • Malissen N
        • et al.
        Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity.
        Circulation. 2017; 136: 2085-2087https://doi.org/10.1161/CIRCULATIONAHA.117.030571
        • Mahmood SS
        • Fradley MG
        • Cohen JV
        • et al.
        Myocarditis in patients treated with immune checkpoint inhibitors.
        J Am Coll Cardiol. 2018; 71: 1755-1764https://doi.org/10.1016/j.jacc.2018.02.037
        • Lyon AR
        • Yousaf N
        • Battisti NML
        • Moslehi J
        • Larkin J
        Immune checkpoint inhibitors and cardiovascular toxicity.
        Lancet Oncol. 2018; 19: e447-e458https://doi.org/10.1016/S1470-2045(18)30457-1
        • Norwood TG
        • Westbrook BC
        • Johnson DB
        • et al.
        Smoldering myocarditis following immune checkpoint blockade.
        J Immunother Cancer. 2017; 5: 91https://doi.org/10.1186/s40425-017-0296-4
        • Jain V
        • Mohebtash M
        • Rodrigo ME
        • Ruiz G
        • Atkins MB
        • Barac A
        Autoimmune myocarditis caused by immune checkpoint inhibitors treated with antithymocyte globulin.
        J Immunother. 2018; 41: 332-335https://doi.org/10.1097/CJI.0000000000000239
        • Tay RY
        • Blackley E
        • McLean C
        • et al.
        Successful use of equine anti-thymocyte globulin (ATGAM) for fulminant myocarditis secondary to nivolumab therapy.
        Br J Cancer. 2017; 117: 921-924https://doi.org/10.1038/bjc.2017.253
        • Reddy N
        • Moudgil R
        • Lopez-Mattei JC
        • et al.
        Progressive and reversible conduction disease with checkpoint inhibitors.
        Can J Cardiol. 2017; 33 (1335.e13–1335.e15)https://doi.org/10.1016/j.cjca.2017.05.026
        • Wang DY
        • Okoye GD
        • Neilan TG
        • Johnson DB
        • Moslehi JJ
        Cardiovascular toxicities associated with cancer immunotherapies.
        Curr Cardiol Rep. 2017; 19: 21https://doi.org/10.1007/s11886-017-0835-0
        • Frigeri M
        • Meyer P
        • Banfi C
        • et al.
        Immune checkpoint inhibitor-associated myocarditis: a new challenge for cardiologists.
        Can J Cardiol. 2018; 34 (92.e1–92.e3)https://doi.org/10.1016/j.cjca.2017.09.025
        • Agrawal N
        • Khunger A
        • Vachhani P
        • et al.
        Cardiac toxicity associated with immune checkpoint inhibitors: case series and review of the literature.
        Case Rep Oncol. 2019; 12: 260-276https://doi.org/10.1159/000498985
        • Salem JE
        • Allenbach Y
        • Vozy A
        • et al.
        Abatacept for severe immune checkpoint inhibitor-associated myocarditis.
        N Engl J Med. 2019; 380: 2377-2379https://doi.org/10.1056/NEJMc1901677
        • Esfahani K
        • Buhlaiga N
        • Thébault P
        • Lapointe R
        • Johnson NA
        • Miller Jr., WH
        Alemtuzumab for immune-related myocarditis due to PD-1 therapy.
        N Engl J Med. 2019; 380: 2375-2376https://doi.org/10.1056/NEJMc1903064