Advertisement

Effects of Anti-vitamin k oral anticoagulants on bone and cardiovascular health

      Abstract

      Vitamin K antagonist oral anticoagulants (VKAs) have been proven over 50 years to be highly effective and acceptably safe in many settings and are still used by millions of people worldwide.
      The main concern about the safety of VKAs regards the risk of bleeding, but there is accumulation evidence of their potentially negative effects beyond hemostasis.
      Indeed, VKAs impair the action of several Vitamin-K Dependent Proteins (VKDP), such as Bone Gla protein, Matrix Gla protein, Gas6 Protein, Periostin and Gla-Ric Protein, involved in bone and vascular metabolism, thus exerting a detrimental effect on bone and vascular health.
      Indeed, although the evidence regarding this issue is not compelling, it has been shown that VKAs use decreases bone mass density, increases the risk of bone fractures and accelerates the process of vascular and valvular calcification.
      Vascular calcification is a major concern in Chronic Kidney Disease (CKD) patients, also in absence of VKAs, because of mineral metabolism derangement, chronic inflammation and oxidative stress.
      Direct Oral AntiCoagulants (DOACs) do not affect VKDP involved in vascular and valvular calcification, and do not induce calcific valve degeneration in animal models, being a possible alternative to AVK for CKD patients. However, the efficacy and safety of DOACs in this population, suggested by some recent observations, requires confirmation by dedicated, randomized study.
      We reviewed here the effects of VKAs in bone and vascular health as compared to DOACs, in order to provide the physicians with some data useful to wisely choose the most suitable anticoagulant for every patient.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hirsh J
        • Eikelboom JW
        • Chan NC
        Fifty years of research on antithrombotic therapy: achievements and disappointments.
        Eur J Intern Med. 2019; 70 (Epub 2019 Nov 1): 1-7https://doi.org/10.1016/j.ejim.2019.10.023
        • Ageno W
        • Gallus AS
        • Wittkowsky A
        • Crowther M
        • Hylek EM
        • Palareti G
        Oral anticoagulant therapy. antithrombotic therapy and prevention of thrombosis, 9th ed: american college of chest physicians evidence-based clinical practice guidelines.
        Chest. 2012; 141 (e44S–e88S)
        • Shum P
        • Klammer G
        • Toews D
        • Barry A
        Anticoagulant Utilization and direct oral anticoagulant prescribing in patients with nonvalvular atrial fibrillation.
        Can J Hosp Pharm. 2019; 72: 428-434
        • Kimachi M
        • Furukawa TA
        • Kimachi K
        • Goto Y
        • Fukuma S
        • Fukuhara S
        Direct oral anticoagulants versus warfarin for preventing stroke and systemic embolic events among atrial fibrillation patients with chronic kidney disease.
        Cochrane Database Syst Rev. 2017; 11CD011373
        • Derebail VK
        • Rheault MN
        • Kerlin BA
        Role of direct oral anticoagulants in patients with kidney disease.
        Kidney Int. 2019; ([Epub ahead of print])
        • Makani A
        • Saba S
        • Jain SK
        • Bhonsale A
        • Sharbaugh MS
        • Thoma F
        • et al.
        Safety and efficacy of direct oral anticoagulants versus warfarin in patients with chronic kidney disease and atrial fibrillation.
        Am J Cardiol. 2020; 125: 210-214
        • Fusaro M
        • Gallieni M
        • Porta C
        • Nickolas TL
        • Khairallah P
        Vitamin K effects in human health: new insights beyond bone and cardiovascular health.
        J Nephrol. 2019; https://doi.org/10.1007/s40620-019-00685-0
        • Wen L
        • Chen J
        • Duan L
        • Li S
        Vitamin K-dependent proteins involved in bone and cardiovascular health (Review).
        Mol Med Rep. 2018; 18: 3-15
        • van de Loo PG
        • Soute BA
        • van Haarlem LJ
        • Vermeer C
        The effect of Gla-containing proteins on the precipitation of insoluble salts.
        Biochem Biophys Res Commun. 1987; 142: 113-119
        • Ducy P
        • Desbois C
        • Boyce B
        • Pinero G
        • Story B
        • Dunstan C
        • et al.
        Increased bone formation in osteocalcin deficient mice.
        Nature. 1996; 382: 448-452
        • Price PA
        • Williamson MK
        • Lothringer JW
        Origin of the bone gamma-carboxyglutamic acid-containing protein found in plasma and its clearance by kidney and bone.
        J Biol Chem. 1981; 256: 12760-12766
        • Luo XH
        • Zhao LL
        • Yuan LQ
        • Wang M
        • Xie H
        • Liao EY
        Development of arterial calcification in adiponectin-deficient mice: adiponectin regulates arterial calcification.
        J Bone Miner Res. 2009; 2: 1461-1468
        • Schurgers LJ
        • Cranenburg EC
        • Vermeer C
        Matrix Gla protein: the calcification inhibitor in need of vitamin K.
        Thromb Haemost. 2008; 100: 593-603
        • Siltari A
        • Vapaatalo H
        Vascular calcification, vitamin k and warfarin therapy – possible or plausible connection?.
        Basic Clin Pharmacol Toxicol. 2018; 122: 19-24
        • Speer MY
        • Yang HY
        • Brabb T
        • Leaf E
        • Look A
        • Lin WL
        • et al.
        CM. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries.
        Circ Res. 2009; 104: 733-741
        • Luo G
        • Ducy P
        • McKee MD
        • Pinero GJ
        • Loyer E
        • Behringer RR
        • Karsenty G
        Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein.
        Nature. 1997; 386: 78-81
        • Munroe PB
        • Olgunturk RO
        • Fryns JP
        • Van Maldergem L
        • Ziereisen F
        • Yuksel B
        • et al.
        Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome.
        Nat Genet. 1999; 21: 142-144
        • Zhang Y
        • Zhao L
        • Wang N
        • Li J
        • He F
        • Li X
        • Wu S
        Unexpected role of matrix Gla protein in osteoclasts: inhibiting osteoclast differentiation and bone resorption.
        Mol Cell Biol. 2019; (pii: e00012-19): 39
        • Pettifor JM
        • Benson R.
        Congenital malformations associated with the administration of oral anticoagulants during pregnancy.
        J Pediatr. 1975; 86: 459-462
        • Mehndiratta S
        • Suneja A
        • Gupta B
        • Bhatt S
        Fetotoxicity of warfarin anticoagulation.
        Arch Gynecol Obstet. 2010; 282: 335-337
        • Price PA
        • Faus SA
        • Williamson MK
        Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves.
        Arterioscler. Thromb. Vasc. Biol. 1998; 18: 1400-1407
        • Krüger T
        • Oelenber S.
        • Kaesler N
        • Schurgers LJ
        • van de Sandt AM
        • Boor P
        • et al.
        Warfarin induces cardiovascular damage in mice.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 2618-2624
        • Schurgers LJ
        • Spronk HM
        • Soute BA
        • Schiffers PM
        • DeMey JG
        • Vermeer C
        Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats.
        Blood. 2007; 109: 2823-2831
        • Manfioletti G
        • Brancolini C
        • Avanzi G
        • Schneider C
        The protein encoded by a growth arrest specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade.
        Mol Cell Biol. 1993; 13: 4976-4985
        • Sasaki T
        • Knyazev PG
        • Clout NJ
        • Cheburkin Y
        • Göhring W
        • Ullrich A
        • et al.
        Structural basis for Gas6-Axl signalling.
        EMBO J. 2006; 25: 80-87
        • Wu G
        • Ma Z
        • Hu W
        • Wang D
        • Gong B
        • Fan C
        • et al.
        Molecular insights of Gas6/TAM in cancer development and therapy.
        Cell Death Dis. 2017; 8: e2700
        • Hutterer M
        • Knyazev P
        • Abate A
        • Reschke M
        • Maier H
        • Stefanova N
        • et al.
        Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme.
        Clin Cancer Res. 2008; 14: 130-138
        • Han J
        • Tian R
        • Yong B
        • Luo C
        • Tan P
        • Shen J
        • Peng T
        Gas6/Axl mediates tumor cell apoptosis, migration and invasion and predicts the clinical outcome of osteosarcoma patients.
        Biochem Biophys Res Commun. 2013; 435: 493-500
        • Son BK
        • Kozaki K
        • Iijima K
        • Eto M
        • Kojima T
        • Ota H
        • et al.
        Statins protect human aortic smooth muscle cells from inorganic phosphate-induced calcification by restoring Gas6-Axl survival pathway.
        Circ Res. 2006; 98: 1024-1031
        • Norris RA
        • Damon B
        • Mironov V
        • Kasyanov V
        • Ramamurthi A
        • Moreno-Rodriguez
        • et al.
        Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues.
        J Cell Biochem. 2007; 101: 695-711
        • Norris RA
        • Moreno-Rodriguez R
        • Hoffman S
        • Markwald RR
        The many facets of the matricelluar protein periostin during cardiac development, remodeling, and pathophysiology.
        J Cell Commun Signal. 2009; 3: 275-286
        • Takanami I
        • Abiko T
        • Koizumi S
        Expression of periostin in patients with non-small cell lung cancer: correlation with angiogenesis and lymphangiogenesis.
        Int J Biol Mark. 2008; 23: 182-186
        • Li C
        • Xu J
        • Wang Q
        • Geng S
        • Yan Z
        • You J
        • et al.
        Prognostic value of periostin in early-stage breast cancer treated with conserving surgery and radiotherapy.
        Oncol Lett. 2018; 15: 8072-8078
        • Viegas CS
        • Cavaco S
        • Neves PL
        • Ferreira A
        • João A
        • Williamson MK
        • Price PA
        • Cancela ML
        • Simes DC
        Gla-rich protein is a novel vitamin K-dependent protein present in serum that accumulates at sites of pathological calcifications.
        Am J Pathol. 2009; 175: 2288-2298
        • Viegas CS
        • Rafael MS
        • Enriquez JL
        • Teixeira A
        • Vitorino R
        • Luis IM
        • Costa RM
        • Santos S
        • Cavaco S
        • Neves J
        Gla-rich protein (GRP) acts as a calcification inhibitor in the human cardiovascular system.
        Arterioscler Thromb Vasc Biol. 2015; 35: 399-408
        • Rafael MS
        • Cavaco S
        • Viegas CS
        • Santos S
        • Ramos A
        • Willems BA
        • et al.
        Insights into the association of Gla-rich protein and osteoarthritis, novel splice variants and γ-carboxylation status.
        Mol Nutr Food Res. 2014; 58: 1636-1646
        • Cavaco S
        • Viegas CS
        • Rafael MS
        • Ramos A
        • Magalhães J
        • Blanco FJ
        • et al.
        Gla-rich protein is involved in the cross-talk between calcification and inflammation.
        Cell Mol Life Sci. 2016; 73: 1051-1065
        • Tufano A
        • Coppola A
        • Contaldi P
        • Franchini M
        • Di Minno G
        Oral anticoagulant drugs and the risk of osteoporosis: new anticoagulants better than old?.
        Semin. Thromb. Hemost. 2015; 41: 382-388
        • Donaldson CJ
        • Harrington DJ.
        Therapeutic warfarin use and the extrahepatic functions of vitamin K-dependent proteins.
        Br J Biomed Sci. 2017; 74: 163-169
        • Aleksandrova AP
        • Mirkova I
        • Nonkova M
        • Mileusnica D
        • Demeneskua J
        • Subotab V
        • et al.
        Effects of warfarin on biological processes other than haemostasis: a review.
        Food Chem Toxicol. 2018; 113: 19-32
        • Signorelli SS
        • Scuto S
        • Marino E
        • Giusti M
        • Xourafa A
        • Gaudio A
        Anticoagulants and osteoporosis.
        Int J Mol Sci. 2019; 20: 5275
        • Jamal SA
        • Browner WS
        • Bauer DC
        • Cummings SR
        Study of osteoporotic fractures research group. Warfarin use and risk for osteoporosis in elderly women.
        Ann Intern Med. 1998; 128: 829-832
        • Caraballo PJ
        • Heit JA
        • Atkinson EJ
        • Silverstein MD
        • O'Fallon WM
        • Castro MR
        • Melton III, LJ
        Long-term use of oral anticoagulants and the risk of fracture.
        Arch Intern Med. 1999; 159: 1750-1756
        • Caraballo PJ
        • Gabriel SE
        • Castro MR
        • Atkinson EJ
        • Melton III, LJ
        Changes in bone density after exposure to oral anticoagulants: a meta-analysis.
        Osteoporos Int. 1999; 9: 441-448
        • Pilon D
        • Castilloux A-M
        • Dorais M
        • LeLorier J
        Oral anticoagulants and the risk of osteoporotic fractures among elderly.
        Pharmacoepidemiol Drug Saf. 2004; 13: 289-294
        • Barnes C
        • Newall F
        • Ignjatovic V
        • Wong P
        • Cameron F
        • Jones G
        • Monagle P
        Reduced bone density in children on long-term warfarin.
        Pediatr Res. 2005; 57: 578-581
        • Gage BF
        • Birman-Deych E
        • Radford MJ
        • Nilasena DS
        • Binder EF
        Risk of osteoporotic fracture in elderly patients taking warfarin: results from the National Registry of Atrial Fibrillation 2.
        Arch Intern Med. 2006; 166: 241-246
        • Woo C
        • Chang LL
        • Ewing SK
        Single-point assessment of warfarin use and risk of osteoporosis in elderly men.
        J Am Geriatr Soc. 2008; 56: 1171-1176
        • Avgeri M
        • Papadopoulou A
        • Platokouki H
        • Douros K
        • Rammos S
        • Nicolaidou P
        Aronis S assessment of bone mineral density and markers of bone turnover in children under long-term oral anticoagulant therapy.
        J Pediatr Hematol Oncol. 2008; 30: 592-597https://doi.org/10.1097/MPH.0b013e31817541a8
        • Rezaieyazdi Z
        • Falsoleiman H
        • Khajehdaluee M
        • Saghafi M
        • Mokhtari-Amirmajdi E
        Reduced bone density in patients on long-term warfarin.
        Int J Rheum Dis. 2009; 12: 130-135
        • Veronese N
        • Bano G
        • Bertozzo G
        • Granziera S
        • Solmi M
        • Manzato E
        • et al.
        Vitamin K antagonists’ use and fracture risk: results from a systematic review and meta-analysis.
        J Thromb Haemost. 2015; 13: 1665-1675
        • Steffel J
        • Giugliano RP
        • Braunwald E
        • Murphy SA
        • Mercuri M
        • Choi Y
        • Aylward P
        • et al.
        Edoxaban versus warfarin in atrial fibrillation patients at risk of falling: ENGAGE AF-TIMI 48 Analysis.
        J Am Coll Cardiol. 2016; 68: 1169-1178
        • Lau WC
        • Chan EW
        • Cheung CL
        • Sing CW
        • Man KK
        • Lip GY
        • et al.
        Association between dabigatran vs warfarin and risk of osteoporotic fractures among patients with nonvalvular atrial fibrillation.
        JAMA. 2017; 317: 1151-1158
        • Gu ZC
        • Zhou LY
        • Shen L
        • Zhang C
        • Pu J
        • Lin HW
        • Liu XY
        Non-vitamin K antagonist oral anticoagulants vs. Warfarin at risk of fractures: a systematic review and meta-analysis of randomized controlled trials.
        Front Pharmacol. 2018; 9: 348
        • Binding C
        • Bjerring Olesen J
        • Abrahamsen B
        • Staerk L
        • Gislason G
        • Nissen Bonde A
        Osteoporotic fractures in patients with atrial fibrillation treated with conventional versus direct anticoagulants.
        J Am Coll Cardiol. 2019; 74 (2150–8. Adv Chronic Kidney Dis. 2019; 26:437-444)
        • Lutsey PL
        • Norby FL
        • Ensrud KE
        • MacLehose RF
        • Diem SJ
        • Chen LY
        • Alonso A
        Association of anticoagulant therapy with risk of fracture among patients with atrial fibrillation.
        JAMA Intern Med. 2019; https://doi.org/10.1001/jamainternmed.2019.5679
        • Huang HK
        • Liu PP
        • Hsu JY
        • Lin SM
        • Lin SM
        • Hui CC
        • et al.
        Risk of osteoporosis in patients with atrial fibrillation using non–vitamin k antagonist oral anticoagulants or warfarin.
        J Am Heart Assoc. 2020; 9e013845
        • Huang HK
        • Liu PP
        • Hsu JY
        • Lin SM
        • Peng CC
        • Wang JH
        • Loh CH
        Fracture risks among patients with atrial fibrillation receiving different oral anticoagulants: a real-world nationwide cohort study.
        Eur Heart J. 2020; 41: 1100-1108
        • De Caterina R
        • Mundi S
        • Fusaro M
        Vitamin K antagonists and osteoporotic fractures: insights from comparisons with the NOACs.
        Eur Heart J. 2020; 41: 1109-1110
        • Chatrou ML
        • Winckers K
        • Hackeng TM
        • Reutelingsperger CP
        • Schurgers LJ
        Vascular calcification: the price to pay for anticoagulation therapy with vitamin K-antagonists.
        Blood Rev. 2012; 26: 155-166
        • Poterucha TJ
        • Goldhaber SZ
        Warfarin and vascular calcification.
        Am J Med. 2016; 129 (e1-635.e4): 635
        • Cozzolino M
        • Fusaro M
        • Ciceri P
        • Gasperoni L
        • Cianciolo G
        The role of vitamin K in vascular calcification.
        Adv Chronic Kidney Dis. 2019; 26: 437-444
        • Schurgers LJ
        • Aebert H
        • Vermeer C
        • Bültmann B
        • Janzen J
        Oral anticoagulant treatment: friend or foe in cardiovascular disease?.
        Blood. 2004; 104: 3231-3232
        • Koos R
        • Mahnken A
        • Muhlenbruch G
        • Brandenburg V
        • Pflueger B
        • Wildberger J
        • et al.
        Relation of oral anticoagulation to cardiac valvular and coronary calcium assessed by multislice spiral computed tomography.
        Am J Cardiol. 2005; 96: 747-749
        • Holden R
        • Sanfilippo A
        • Hopman W
        • Zimmerman D
        • Garland J
        • Morton A
        Warfarin and aortic valve calcification in hemodialysis patients.
        J Nephrol. 2007; 20: 417-422
        • Koos R
        • Krueger T
        • Westenfeld R
        • Kühl HP
        • Brandenburg V
        • Mahnken AH
        • et al.
        Relation of circulating Matrix Gla-Protein and anticoagulation status in patients with aortic valve calcification.
        Thromb Haemost. 2009; 101: 706-713
        • Lerner RG
        • Aronow WS
        • Sekhri A
        • Palaniswamy C
        • Ahn C
        • Singh T
        • et al.
        Warfarin use and the risk of valvular calcification.
        J Thromb Haemost. 2009; 7: 2023-2027
        • Villines T
        • O'Malley P
        • Feuerstein I
        • Thomas S
        • Taylor A
        Does prolonged warfarin exposure potentiate coronary calcification in humans? Results of the Warfarin and Coronary Calcification Study.
        Calcif Tissue Int. 2009; 85: 494-500
        • Rennenberg RJMW
        • van Varik BJ
        • Schurgers LJ
        • Hamulyak K
        • Ten Cate H
        • Leiner T
        • et al.
        Chronic coumarin treatment is associated with increased extracoronary arterial calcification in humans.
        Blood. 2010; 115: 5121-5123
        • Weijs B
        • Blaauw Y
        • Rennenberg RJMW
        • Schurgers LJ
        • Timmermans CCMM
        • Pison L
        • et al.
        Patients using vitamin K antagonists show increased levels of coronary calcification: an observational study in low-risk atrial fibrillation patients.
        Eur Heart J. 2011; 32: 2555-2562
        • Yamamoto K
        • Koretsune Y
        • Akasaka T
        • Kisanuki A
        • Ohte N
        • Takenaka T
        • et al.
        Effects of vitamin K antagonist on aortic valve degeneration in non-valvular atrial fibrillation patients: prospective 4-year observational study.
        Thrombosis Research. 2017; 160: 69-75
        • Win TT
        • Nakanishi R
        • Osawa K
        • Li D
        • Susaria SS
        • Jayawardena E
        • et al.
        Apixaban versus warfarin in evaluation of progression of atherosclerotic and calcified plaques (prospective randomized trial).
        Am Heart J. 2019; 212: 129-133
        • Di Lullo L
        • Tripepi G
        • Ronco C
        • D'Arrigo G
        • Barbera V
        • Russo D
        • et al.
        Cardiac valve calcification and use of anticoagulants: preliminary observation of a potentially modifiable risk factor.
        Int J Cardiol. 2019; 278: 243-249
        • Annweiler G
        • Labriffe M
        • Ménager P
        On behalf of the SAM group. Intracranial calcifications under vitamin K antagonists or direct oral anticoagulants: results from the French VIKING study in older adults.
        Maturitas. 2020; 132: 35-39
        • Block GA
        • Raggi P
        • Bellasi A
        • Kooienga L
        • Spiegel DM
        Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients.
        Kidney Int. 2007; 71: 438-441
        • Raggi P
        • Giachelli C
        • Bellasi A
        Interaction of vascular and bone disease in patients with normal renal function and patients undergoing dialysis.
        Nat Clin Pract Cardiovasc Med. 2007; 4: 26-33
        • Bellasi A
        • Di Lullo L
        • Raggi P
        Cardiovascular calcification: the emerging role of micronutrients.
        Atherosclerosis. 2018; 273: 119-121
        • Gipstein RM
        • Coburn JW
        • Adams DA
        • Lee DB
        • Parsa KP
        • Sellers A
        • et al.
        Calciphylaxis in man. A syndrome of tissue necrosis and vascular calcification in 11 patients with chronic renal failure.
        Arch Intern Med. 1976; 136: 1273-1280
        • Brandenburg VM
        • Cozzolino M
        • Ketteler M
        Calciphylaxis: a still unmet challenge.
        J Nephrol. 2011; 24: 142-148
        • Mazhar A
        • Johnson R
        • Gillen D
        • Stivelman J
        • Ryan M
        • Davis C
        • et al.
        Risk factors and mortality associated with calciphylaxis in end-stage renal disease.
        Kidney Int. 2001; 60: 324-332
        • Nigwekar SU
        • Wolf M
        • Sterns RH
        • Hix JK
        Calciphylaxis from nonuremic causes: a systematic review.
        Clin J Am Soc Nephrol. 2008; 3: 1139-1143
        • Patel DM
        • Patel MV
        • Patel AD
        • Kaklotar JC
        • Patel GR
        • Patel MM
        Non-uremic Calciphylaxis: a rare and late adverse reaction of warfarin.
        Curr Drug Saf. 2019; 14: 246-248
        • Rattazzi M
        • Faggin E
        • Bertacco E
        • Nardin C
        • Pagliani L
        • Plebani M
        • et al.
        Warfarin, but not rivaroxaban, promotes the calcification of the aortic valve in ApoE-/- mice.
        Cardiovasc Ther. 2018; 36: e12438
        • Posma JJ
        • Grover SP
        • Hisada Y
        • Owens III, AP
        • Antoniak S
        • Spronk HM
        • et al.
        Roles of coagulation proteases and PARs (Protease-Activated Receptors) in mouse models of inflammatory diseases.
        Arterioscler Thromb Vasc Biol. 2019; 39: 13-24
        • KDIGO
        Clinical practice guideline for the evaluation and management of chronic kidney disease.
        Kidney Int. Suppl. 2012; 3 (2013): 19-62
        • Kimachi M
        • Furukawa TA
        • Kimachi K
        • Goto Y
        • Fukuma S
        • Fukuhara S
        Direct oral anticoagulants versus warfarin for preventing stroke and systemic embolic events among atrial fibrillation patients with chronic kidney disease.
        Cochrane Database Syst Rev. 2017; 11CD011373
        • Sarratt SC
        • Nesbit R
        • Moye R
        Safety outcomes of apixaban compared with warfarin in patients with end-stage renal disease.
        Ann Pharmacother. 2017; 51: 445-450
        • Stanton BE
        • Barasch NS
        • Tellor KB
        Comparison of the safety and effectiveness of apixaban versus warfarin in patients with severe renal impairment.
        Pharmacotherapy. 2017; 37: 412-419
        • Siontis KC
        • Zhang X
        • Eckard A
        • Bhave N
        • Schaubel DE
        • He K
        • et al.
        Outcomes associated with apixaban use in patients with end-stage kidney disease and atrial fibrillation in the United States.
        Circulation. 2018; 138: 1519-1529
        • Schafer JH
        • Casey AL
        • Dupre KA
        • Staubes BA
        Safety and efficacy of apixaban versus warfarin in patients with advanced chronic kidney disease.
        Ann Pharmacother. 2018; 52: 1078-1084
        • Coleman CI
        • Kreutz R
        • Sood NA
        • Bunz TJ
        • Eriksson D
        • Meinecke AK
        • et al.
        Rivaroxaban versus warfarin in patients with nonvalvular atrial fibrillation and severe kidney disease or undergoing hemodialysis.
        Am J Med. 2019; 132: 1078-1083
        • Kuno T
        • Takagi H
        • Ando T
        • Sugiyama T
        • Miyashita S
        • Valentin N
        • et al.
        Oral anticoagulation for patients with atrial fibrillation on long-term hemodialysis.
        J Am Coll Cardiol. 2020; 75: 273-285
        • Chang S
        • Wu CCV
        • Yeh YH
        • Kuo CF
        • Chen YL
        • Wen MS
        • et al.
        Efficacy and safety of oral anticoagulants in patients with atrial fibrillation and stages 4 or 5 chronic kidney disease.
        Am J Med. 2019; 132: 1335-1343
        • Makani A
        • Saba S
        • Jain SK
        • Bhonsale A
        • Sharbaugh MS
        • Thoma F
        • et al.
        Safety and efficacy of direct oral anticoagulants versus warfarin in patients with chronic kidney disease and atrial fibrillation.
        Am J Cardiol. 2020; 125: 210-214https://doi.org/10.1016/j.amjcard.2019.10.033
        • Stanifer JW
        • Pokorney SD
        • Chertow GM
        • Hohnloser SH
        • Wojdyla DM
        • Garonzik S
        • et al.
        Apixaban versus warfarin in patients with atrial fibrillation and advanced chronic kidney disease.
        Circulation. 2020; ([Epub ahead of print])https://doi.org/10.1161/CIRCULATIONAHA.119.044059