Advertisement

Hospital admissions for community-acquired, ventilator-associated and nonventilator hospital-acquired pneumonia in COPD patients in Spain (2016-2017).

      Highlights

      • Incidence of hospitalizations for pneumonia were higher in COPD-patients.
      • In hospital mortality was significantly lower among COPD patients with CAP.
      • No differences in mortality for NV-HAP or VAP among COPD and non-COPD patients.
      • Age and undergoing dialysis are risk factors for mortality in all types of pneumonia.

      Abstract

      Background

      To examine the incidence, characteristics and outcomes of community-acquired pneumonia (CAP), ventilator-associated pneumonia (VAP) and nonventilator hospital-acquired pneumonia (NV-HAP) in patients with or without COPD; compare in-hospital outcomes; and identify factors associated with in-hospital mortality (IHM) for pneumonia.

      Methods

      We carried out a retrospective observational study using the hospital discharge records from 2016-17 of the Spanish National Health System. Propensity score matching was used for data analysis.

      Results

      We found 245,905 patients (≥40 years) with pneumonia; we identified CAP in 228,139 patients (19.85% with COPD), VAP in 2,771 patients (8.55% with COPD) and NV-HAP in 14,995 patients (14.17% with COPD). The incidence for the three types of pneumonia was higher in COPD patients (CAP: incidence rate ratio (IRR) 2.23, 95% CI 2.21-2.26; VAP: IRR 1.25, 95% CI 1.08-1.42; and NV-HAP: IRR 1.55, 95% CI 1.48-1.63). The IHM for CAP was 10.35% in COPD patients and 12.91% in the controls (p<0.001). In patients with VAP and NV-HAP, IHM was not significantly different between those with and without COPD (43.88% vs. 41.77%;p=0.643 and 29.21% vs. 30.57%;p=0.331, respectively). Factors associated with IHM for all types of pneumonia analyzed in COPD patients were older age and receiving dialysis.

      Conclusions

      The incidence of hospitalizations for all types of pneumonia was significantly higher in COPD patients than in the non-COPD population. In contrast, IHM was significantly lower among COPD patients with CAP than among matched non-COPD patients. Higher mortality rates in COPD patients with any pneumonia type were associated with increasing age and receiving dialysis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lanks CW
        • Musani AI
        • Hsia DW
        Community-acquired pneumonia and hospital-acquired pneumonia.
        Med Clin North Am. 2019; 103: 487-501https://doi.org/10.1016/j.mcna.2018.12.008
        • Welte T
        • Torres A
        • Nathwani D
        Clinical and economic burden of community-acquired pneumonia among adults in Europe.
        Thorax. 2012; 67: 71-79https://doi.org/10.1136/thx.2009.129502
        • Jain S
        • Self WH
        • Wunderink RG
        • Fakhran S
        • Balk R
        • Bramley AM
        • et al.
        Community-acquired pneumonia requiring hospitalization among U.S. adults.
        N Engl J Med. 2015; 373: 415-427https://doi.org/10.1056/NEJMoa1500245
        • Fry AM
        • Shay DK
        • Holman RC
        • Curns AT
        • Anderson LJ
        Trends in hospitalizations for pneumonia among persons aged 65 years or older in the United States, 1988-2002.
        JAMA. 2005; 294: 2712-2719https://doi.org/10.1001/jama.294.21.2712
        • Trotter CL
        • Stuart JM
        • George R
        • Miller E
        Increasing hospital admissions for pneumonia, England.
        Emerg Infect Dis. 2008; 14: 727-733https://doi.org/10.3201/eid1405.071011
        • Quan TP
        • Fawcett NJ
        • Wrightson JM
        • Finney J
        • D1 Wyllie
        • K3 Jeffery
        • et al.
        Increasing burden of community-acquired pneumonia leading to hospitalisation, 1998-2014.
        Thorax. 2016; : 71535-71542https://doi.org/10.1136/thoraxjnl-2015-207688
        • De Miguel-Díez J
        • López-de-Andrés A
        • Hernández-Barrera V
        • Jiménez-Trujillo I
        • Méndez-Bailón M
        • de Miguel-Yanes JM
        • et al.
        Impact of COPD on outcomes in hospitalized patients with community-acquired pneumonia: analysis of the Spanish national hospital discharge database (2004-2013).
        Eur J Intern Med. 2017; 43: 69-76https://doi.org/10.1016/j.ejim.2017.06.008
        • De Miguel-Díez J
        • López-de-Andrés A
        • Hernández-Barrera V
        • Jiménez-Trujillo I
        • Méndez-Bailón M
        • Miguel-Yanes JM
        • et al.
        Decreasing incidence and mortality among hospitalized patients suffering a ventilator-associated pneumonia: analysis of the Spanish national hospital discharge database from 2010 to 2014.
        Medicine (Baltimore). 2017; 96: e7625https://doi.org/10.1097/MD.0000000000007625
        • Torres A
        • Barberán J
        • Ceccato A
        • Martin-Loeches I
        • Ferrer M
        • Menéndez R
        • et al.
        Hospital-acquired pneumonia. Spanish society of pulmonology and thoracic surgery (SEPAR) guidelines. 2019 update.
        Arch Bronconeumol. 2020; 56 (Suppl): 11-19https://doi.org/10.1016/j.arbres.2020.01.015
        • Magill SS
        • Klompas M
        • Balk R
        • Burns SM
        • Deutschman CS
        • Diekema D
        • et al.
        Developing a new, national approach to surveillance for ventilator-associated events: executive summary.
        Clin Infect Dis. 2013; 57: 1742-1746https://doi.org/10.1093/cid/cit577
        • Ferrer M
        • Torres A.
        Epidemiology of ICU-acquired pneumonia.
        Curr Opin Crit Care. 2018; 24: 325-331https://doi.org/10.1097/MCC.0000000000000536
        • Giuliano KK
        • Baker D
        • Quinn B
        The epidemiology of nonventilator hospital-acquired pneumonia in the United States.
        Am J Infect Control. 2018; 46: 322-327https://doi.org/10.1016/j.ajic.2017.09.005
        • Restrepo MI
        • Sibila O
        • Anzueto A
        Pneumonia in patients with chronic obstructive pulmonary disease.
        Tuberc Respir Dis (Seoul). 2018; 81: 187-197https://doi.org/10.4046/trd.2018.0030
        • Seemungal TA
        • Donaldson GC
        • Paul EA
        • Bestall JC
        • Jeffries DJ
        • Wedzicha JA
        Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 1998; 157: 1418-1422https://doi.org/10.1164/ajrccm.157.5.9709032
        • Ji Z
        • Hernández Vázquez J
        • Bellón Cano JM
        • Gallo González V
        • Recio Moreno B
        • Cerezo Lajas A
        • et al.
        Influence of pneumonia on the survival of patients with COPD.
        J Clin Med. 2020; 9: 230https://doi.org/10.3390/jcm9010230
        • Liapikou A
        • Polverino E
        • Ewig S
        • Cillóniz C
        • Marcos MA
        • Mensa J
        • et al.
        Severity and outcomes of hospitalised community-acquired pneumonia in COPD patients.
        Eur Respir J. 2012; 39: 855-861https://doi.org/10.1183/09031936.00067111
        • Ishiguro T
        • Takayanagi N
        • Yamaguchi S
        • Yamakawa H
        • Nakamoto K
        • Takaku Y
        • et al.
        Etiology and factors contributing to the severity and mortality of community-acquired pneumonia.
        Intern Med. 2013; 52: 317-324https://doi.org/10.2169/internalmedicine.52.8830
        • Chalmers JD
        • Singanayagam A
        • Murray MP
        • Scally C
        • Fawzi A
        • Hill AT
        Risk factors for complicated parapneumonic effusion and empyema on presentation to hospital with community-acquired pneumonia.
        Thorax. 2009; 64: 592-597https://doi.org/10.1136/thx.2008.105080
        • Cillóniz C
        • Ewig S
        • Polverino E
        • Muñoz-Almagro C
        • Marco F
        • Gabarrús A
        • et al.
        Pulmonary complications of pneumococcal community-acquired pneumonia: incidence, predictors, and outcomes.
        Clin Microbiol Infect. 2012; 18: 1134-1142https://doi.org/10.1111/j.1469-0691.2011.03692.x
        • Jiang HL
        • Chen HX
        • Liu W
        • Fan T
        • Liu GJ
        • Mao B
        Is COPD associated with increased mortality and morbidity in hospitalized pneumonia? A systematic review and meta-analysis.
        Respirology. 2015; 20: 1046-1054https://doi.org/10.1111/resp.12597
        • Williams NP
        • Coombs NA
        • Johnson MJ
        • Josephs LK
        • Rigge LA
        • Staples KJ
        • et al.
        Seasonality, risk factors and burden of community-acquired pneumonia in COPD patients: a population database study using linked health care records.
        Int J Chron Obstruct Pulmon Dis. 2017; 12: 313-322https://doi.org/10.2147/COPD.S121389.eCollection2017
        • Miravitlles M
        • Soriano JB
        • García-Río F
        • Muñoz L
        • Duran-Tauleria E
        • Sanchez G
        • et al.
        Prevalence of COPD in Spain: impact of undiagnosed COPD on quality of life and daily life activities.
        Thorax. 2009; 64: 863-868https://doi.org/10.1136/thx.2009.115725
      1. Ministerio de sanidad, consumo y bienestar social. registro de actividad de atención especializada. RAE-CMBD. https://www.mscbs.gob.es/estadEstudios/estadisticas/cmbdhome.htm. [accessed 05.31.2020].

      2. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2020 report. Available at:www.goldcopd.org[accessed 05.31.2020].

        • Lindenauer PK
        • Lagu T
        • Shieh MS
        • Pekow PS
        • Rothberg MB
        Association of diagnostic coding with trends in hospitalizations and mortality of patients with pneumonia, 2003-2009.
        JAMA. 2012; 307: 1405-1413https://doi.org/10.1001/jama.2012.384
        • Charlson ME
        • Pompei P
        • Ales KL
        • MacKenzie CR
        A new method of classifying prognostic comorbidity in longitudinal studies: development and validation.
        J Chronic Dis. 1987; 40: 373-383https://doi.org/10.1016/0021-9681(87)90171-8
        • Quan H
        • Sundararajan V
        • Halfon P
        • Fong A
        • Burnand B
        • Luthi JC
        • et al.
        Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data.
        Med Care. 2005; 43: 1130-1139https://doi.org/10.1097/01.mlr.0000182534.19832.83
        • Austin PC.
        An introduction to propensity score methods for reducing the effects of confounding in observational studies.
        Multivariate Behav Res. 2011; 46: 399-424https://doi.org/10.1080/00273171.2011.568786
        • D'Agostino Jr, RB
        Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group.
        Stat Med. 1998; 17: 2265-2281
      3. doi:10.1002/(sici)1097-0258(19981015)17:19<2265::aid-sim918>3.0.co;2-b.
      4. Leuven E, Sianesi B.PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing. https://econpapers.repec.org/software/bocbocode/s432001.htm. [accessed 05.31.2020].

        • Austin PC.
        Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies.
        Pharm Stat. 2011; 10: 150-161https://doi.org/10.1002/pst.433
      5. Instituto nacional de estadística. encuesta nacional de salud 2017. [Spanish National Health Survey 2017]https://www.mscbs.gob.es/estadEstudios/estadisticas/encuestaNacional/encuesta2017.htm[accessed 05.31.2020].

      6. Instituto nacional de estadística: national stadistical institute. population estimates 2016. https://www.ine.es./dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176951&menu=ultiDatos&idp=1254735572981[accessed 05.31.2020].

        • Austin PC.
        Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples.
        Stat Med. 2011; 30: 1292-1301https://doi.org/10.1002/sim.4200
        • Søgaard M
        • Nielsen RB
        • Schønheyder HC
        • Nørgaard M
        • Thomsen RW
        Nationwide trends in pneumonia hospitalization rates and mortality, Denmark 1997-2011.
        Respir Med. 2014; 108: 1214-1222https://doi.org/10.1016/j.rmed.2014.05.004
        • Bordon J
        • Slomka M
        • Gupta R
        • Furmanek S
        • Cavallazzi R
        • Sethi S
        • et al.
        Hospitalization due to community-acquired pneumonia in patients with chronic obstructive pulmonary disease: incidence, epidemiology and outcomes.
        Clin Microbiol Infect. 2020; 26: 220-226https://doi.org/10.1016/j.cmi.2019.06.025
        • De Miguel-Díez J
        • López-de-Andrés A
        • Hernández-Barrera V
        • Jiménez-Trujillo I
        • Méndez-Bailón M
        • de Miguel-Yanes JM
        • et al.
        Postoperative pneumonia among patients with and without COPD in Spain from 2001 to 2015.
        Eur J Intern Med. 2018; 53: 66-72https://doi.org/10.1016/j.ejim.2018.02.011
        • Koulenti D
        • Blot S
        • Dulhunty JM
        • Papazian L
        • Martin-Loeches I
        • Dimopoulos G
        • et al.
        COPD patients with ventilator-associated pneumonia: implications for management.
        Eur J Clin Microbiol Infect Dis. 2015; 34: 2403-2411https://doi.org/10.1007/s10096-015-2495-6
        • Rouzé A
        • Cottereau A
        • Nseir S
        Chronic obstructive pulmonary disease and the risk for ventilator-associated pneumonia.
        Curr Opin Crit Care. 2014; 20 (Oct): 525-531https://doi.org/10.1097/MCC.0000000000000123
        • Janson C
        • Johansson G
        • Ställberg B
        • Lisspers K
        • Olsson P
        • Keininger DL
        • et al.
        Identifying the associated risks of pneumonia in COPD patients: ARCTIC an observational study.
        Respir Res. 2018; 19: 172https://doi.org/10.1186/s12931-018-0868-y
      7. De Miguel-Díez J, Jiménez-García R, Hernández-Barrera V, Puente-Maestu L, Ji Z, de Miguel-Yanes JM, et al. Ventilatory support use in hospitalized patients with community-acquired pneumonia. Fifteen-year trends in Spain (2001-2015). Arch Bronconeumol. 2020; S0300-2896(19)30614-3. doi: 10.1016/j.arbres.2019.12.008.

        • Rochwerg B
        • Brochard L
        • Elliott MW
        • Hess D
        • Hill NS
        • Nava S
        • et al.
        Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure.
        Eur Respir J. 2017; 501602426https://doi.org/10.1183/13993003.02426-2016
        • Murad A
        • Li PZ
        • Dial S
        • Shahin J
        The role of noninvasive positive pressure ventilation in community-acquired pneumonia.
        J Crit Care. 2015; 30: 49-54https://doi.org/10.1016/j.jcrc.2014.09.021
        • Sibbel S
        • Sato R
        • Hunt A
        • Turenne W
        • Brunelli SM
        The clinical and economic burden of pneumonia in patients enrolled in Medicare receiving dialysis: a retrospective, observational cohort study.
        BMC Nephrol. 2016; 17: 199https://doi.org/10.1186/s12882-016-0412-6
        • Smith SB
        • Ruhnke GW
        • Weiss CH
        • Waterer GW
        • Wunderink RG
        Trends in pathogens among patients hospitalized for pneumonia from 1993 to 2011.
        JAMA Intern Med. 2014; 174: 1837-1839https://doi.org/10.1001/jamainternmed.2014.4344
        • Yin JK
        • Jayasinghe SH
        • Charles PG
        • King C
        • Chiu CK
        • Menzies RI
        • et al.
        Determining the contribution of Streptococcus pneumoniae to community-acquired pneumonia in Australia.
        Med J Aust. 2017; 207: 396-400https://doi.org/10.5694/mja16.01102
        • Koulenti D
        • Parisella FR
        • Xu E
        • Lipman J
        • Rello J
        The relationship between ventilator-associated pneumonia and chronic obstructive pulmonary disease: what is the current evidence?.
        Eur J Clin Microbiol Infect Dis. 2019; 38: 637-647https://doi.org/10.1007/s10096-019-03486-2
        • Nseir S
        • Di Pompeo C
        • Soubrier S
        • Cavestri B
        • Jozefowicz E
        • Saulnier F
        • Durocher A
        Impact of ventilator-associated pneumonia on outcome in patients with COPD.
        Chest. 2005; 128: 1650-1656https://doi.org/10.1378/chest.128.3.1650
        • Makris D
        • Desrousseaux B
        • Zakynthinos E
        • Durocher A
        • Nseir S
        The impact of COPD on ICU mortality in patients with ventilator-associated pneumonia.
        Respir Med. 2011; 105: 1022-1029https://doi.org/10.1016/j.rmed.2011.03.001
        • Rouzé A
        • Boddaert P
        • Martin-Loeches I
        • Povoa P
        • Rodriguez A
        • Ramdane N
        • et al.
        Impact of chronic obstructive pulmonary disease on incidence, microbiology and outcome of ventilator-associated lower respiratory tract infections.
        Microorganisms. 2020; 8 (pii): E165https://doi.org/10.3390/microorganisms8020165
        • Ewig S
        • Birkner N
        • Strauss R
        • Schaefer E
        • Pauletzki J
        • Bischoff H
        • et al.
        New perspectives on community-acquired pneumonia in 388 406 patients.
        Result Nationwide Mandat Perform Meas Program Healthc Qual. Thorax. 2009; 64: 1062-1069https://doi.org/10.1136/thx.2008.109785
        • Dusemund F
        • Chronis J
        • Baty F
        • Albrich WC
        • Brutsche MH
        The outcome of community-acquired pneumonia in patients with chronic lung disease: a case-control study.
        Swiss Med Wkly. 2014; 144 (eCollection 2014): w14013https://doi.org/10.4414/smw.2014.14013
        • Hespanhol VP
        • Bárbara C.
        Pneumonia mortality, comorbidities matter?.
        Pulmonology. 2019; 26: 123-129https://doi.org/10.1016/j.pulmoe.2019.10.003
        • Koulenti D
        • Tsigou E
        • Rello J
        Nosocomial pneumonia in 27 ICUs in Europe: perspectives from the EU-VAP/CAP study.
        Eur J Clin Microbiol Infect Dis. 2017; 36: 1999-2006https://doi.org/10.1007/s10096-016-2703-z
        • Braeken DCW
        • Franssen FME
        • Schütte H
        • Pletz MW
        • Bals R
        • Martus P
        • et al.
        Increased severity and mortality of CAP in COPD: results from the German competence network, CAPNETZ.
        Chronic Obstr Pulm Dis. 2015; 2: 131-140https://doi.org/10.15326/jcopdf.2.2.2014.0149
        • Steer J
        • Norman EM
        • Afolabi OA
        • Gibson GJ
        • Bourke SC
        Dyspnoea severity and pneumonia as predictors of in-hospital mortality and early readmission in acute exacerbations of COPD.
        Thorax. 2012; 67: 117-121https://doi.org/10.1136/thoraxjnl-2011-200332
        • Wan YD
        • Sun TW
        • Liu ZQ
        • Zhang SG
        • Wang LX
        • Kan QC
        Efficacy and safety of corticosteroids for community-acquired pneumonia: a systematic review and meta-analysis.
        Chest. 2016; 149: 209-219https://doi.org/10.1378/chest.15-1733
        • Huang J
        • Guo J
        • Li H
        • Huang W
        • Zhang T
        Efficacy and safety of adjunctive corticosteroids therapy for patients with severe community-acquired pneumonia: a systematic review and meta-analysis.
        Medicine (Baltimore). 2019; 98: e14636https://doi.org/10.1097/MD.0000000000014636