Advertisement

Mechanisms of weight regain.

  • Luca Busetto
    Affiliations
    Department of Medicine, University of Padova, Padova, Italy
    Search for articles by this author
  • Silvia Bettini
    Correspondence
    Correspondence: Silvia Bettini, Internal Medicine 3, Department of Medicine, University of Padova, Via Giustiniani 2, 35128 PADOVA ITALY.
    Affiliations
    Department of Medicine, University of Padova, Padova, Italy
    Search for articles by this author
  • Janine Makaronidis
    Affiliations
    Centre for Obesity Research, Division of Medicine, Rayne Building, University College London (UCL), London, United Kingdom

    Bariatric Centre for Weight Managemetn and Metabolic Surgery, University College London Hospital (UCLH), London, United Kingdom

    National Institute of Health Research, UCLH Biomedical Research Centre, London, United Kingdom
    Search for articles by this author
  • Carl A. Roberts
    Affiliations
    Department of Psychology, University of Liverpool, United Kingdom
    Search for articles by this author
  • Jason C.G. Halford
    Affiliations
    Department of Psychology, University of Liverpool, United Kingdom

    School of Psychology, University of Leeds, United Kingdom
    Search for articles by this author
  • Rachel L. Batterham
    Affiliations
    Centre for Obesity Research, Division of Medicine, Rayne Building, University College London (UCL), London, United Kingdom

    Bariatric Centre for Weight Managemetn and Metabolic Surgery, University College London Hospital (UCLH), London, United Kingdom

    National Institute of Health Research, UCLH Biomedical Research Centre, London, United Kingdom
    Search for articles by this author
Published:January 16, 2021DOI:https://doi.org/10.1016/j.ejim.2021.01.002

      Highlights

      • Weight regain is not a simplistic matter of lack of compliance of patients.
      • Gut hormone secretion profiles impact upon predisposition to weight regain.
      • Metabolic adaptation explains the reduction of energy expenditure after weight loss.
      • Appetite regulation consists in an interplay between hunger/satiety and reward.

      Abstract

      Weight regain following weight loss is frequent problem that people with obesity face. This weight recidivism is often attributed to the lack of compliance with appropriate food habits and exercise. On the contrary, it is known that body weight and fat mass are regulated by numerous physiological mechanisms, far beyond voluntary food intake and physical exercise. Thus, the aim of this paper is to review the main peripheral and central mechanisms involved in weight regain.
      Gut hormone secretion profiles impact upon predisposition to weight regain according to an individual variability, although it is recognised a usual pattern of compensatory changes: a reduction in anorectic hormones secretion and an increase in orexigenic hormone. These changes lead to both increased appetite and reward value of food leading to increased energye intake. In addition, resting energy expenditure after weight loss is lower than expected according to body composition changes. This gap between observed and predicted energy expenditure following weight loss is named metabolic adaptation, which has been suggested to explain partly weight regain.
      This complicated scenario, beyond patient motivation, makes weight regain a challenge in long-term management interventions in patients with obesity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Frühbeck G.
        • Busetto L.
        • Dicker D.
        • Yumuk V.
        • Goossens G.H.
        • Hebebrand J.
        • et al.
        The ABCD of Obesity: an EASO position statement on a diagnostic term with clinical and scientific implications.
        Obes Facts. 2019; 12: 131-136https://doi.org/10.1159/000497124
        • Caterson I.D.
        • Alfadda A.A.
        • Auerbach P.
        • Coutinho W.
        • Cuevas A.
        • Dicker D.
        • et al.
        Gaps to bridge: misalignment between perception, reality and actions in obesity.
        Diabetes Obes Metab. 2019; 21: 1914-1924https://doi.org/10.1111/dom.13752
        • Rubino F.
        • Puhl R.M.
        • Cummings D.E.
        • Eckel R.H.
        • Ryan D.H.
        • Mechanick J.I.
        • et al.
        Joint international consensus statement for ending stigma of obesity.
        Nat. Med. 2020; 26: 485-497https://doi.org/10.1038/s41591-020-0803-x
        • Foster-Schubert K.E.
        • Cummings D.E.
        Emerging therapeutic strategies for obesity.
        Endocr Rev. 2006; 27: 779-793https://doi.org/10.1210/er.2006-0041
        • Sumithran P.
        • Prendergast L.A.
        • Delbridge E.
        • Purcell K.
        • Shulkes A.
        • Kriketos A.
        • et al.
        Long-term persistence of hormonal adaptations to weight loss.
        N Engl J Med. 2011; 365: 1597-1604
        • Zhao X.
        • Han Q.
        • Gang X.
        • Lv Y.
        • Liu Y.
        • Sun C.
        • et al.
        The Role of Gut Hormones in Diet-Induced Weight Change: a Systematic Review.
        Horm Metab Res. 2017; 49: 816-825
        • Cummings D.E.
        • Weigle D.S.
        • Frayo R.S.
        • Breen P.A.
        • Ma M.K.
        • Dellinger E.P.
        • et al.
        Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery.
        N Engl J Med. 2002; 346: 1623-1630https://doi.org/10.1056/NEJMoa012908
        • Crujeiras A.B.
        • Goyenechea E.
        • Abete I.
        • Lage M.
        • Carreira M.C.
        • Martínez J.A.
        • et al.
        Weight regain after a diet-induced loss is predicted by higher baseline leptin and lower ghrelin plasma levels.
        J Clin Endocrinol Metab. 2010; 95: 5037-5044https://doi.org/10.1210/jc.2009-2566
        • Nymo S.
        • Coutinho S.R.
        • Eknes P.H.
        • Vestbostad I.
        • Rehfeld J.F.
        • Truby H.
        • et al.
        Investigation of the long-term sustainability of changes in appetite after weight loss.
        Int J Obes. 2018; 42: 1489-1499https://doi.org/10.1038/s41366-018-0119-9
        • Gibson A.A.
        • Seimon R.V.
        • Lee C.M.Y.
        • Ayre J.
        • Franklin J.
        • Markovic T.P.
        • et al.
        Do ketogenic diets really suppress appetite? A systematic review and meta-analysis.
        Obes Rev. 2015; 16: 64-76https://doi.org/10.1111/obr.12230
        • Stubbs B.J.
        • Cox P.J.
        • Evans R.D.
        • Cyranka M.
        • Clarke K.
        • de Wet H.
        A Ketone Ester Drink Lowers Human Ghrelin and Appetite.
        Obesity (Silver Spring). 2018; 26: 269-273https://doi.org/10.1002/oby.22051
        • Nymo S.
        • Coutinho S.R.
        • Eknes P.H.
        • Vestbostad I.
        • Rehfeld J.F.
        • Truby H.
        • et al.
        Investigation of the long-term sustainability of changes in appetite after weight loss.
        Int J Obes. 2018; 42: 1489-1499https://doi.org/10.1038/s41366-018-0119-9
        • de Luis D.A.
        • Gonzalez Sagrado M.
        • Conde R.
        • Aller R.
        • Izaola O
        The effects of two different hypocaloric diets on glucagon-like peptide 1 in obese adults, relation with insulin response after weight loss.
        J Diabetes Complications. 2009; 23: 239-243https://doi.org/10.1016/j.jdiacomp.2007.12.006
        • Iepsen E.W.
        • Lundgren J.
        • Holst J.J.
        • Madsbad S.
        • Torekov S.S.
        Successful weight loss maintenance includes long-term increased meal responses of GLP-1 and PYY3–36.
        Eur J Endocrinol. 2016; 174: 775-784https://doi.org/10.1530/EJE-15-1116
        • Thom G.
        • Dombrowski S.U.
        • Brosnahan N.
        • Algindan Y.Y.
        • Rosario Lopez-Gonzalez M.
        • Roditi G.
        • et al.
        The role of appetite-related hormones, adaptive thermogenesis, perceived hunger and stress in long-term weight-loss maintenance: a mixed-methods study.
        Eur J Clin Nutr. 2020; 74: 622-632https://doi.org/10.1038/s41430-020-0568-9
        • De Benedictis J.N.
        • Nymo S.
        • Ollestad K.H.
        • Boyesen G.A.
        • Rehfeld J.F.
        • Holst J.J.
        • et al.
        Changes in the Homeostatic Appetite System After Weight Loss Reflect a Normalization Toward a Lower Body Weight.
        JCEM. 2020; 105: e2538-e2546https://doi.org/10.1210/clinem/dgaa202
        • Rosenbaum M.
        • Leibel R.L.
        Brain Reorganization following Weight Loss.
        Nestle Nutr Inst Workshop Ser. 2012; 73: 1-20https://doi.org/10.1159/000341282
        • Neseliler S.
        • Hu W.
        • Larcher K.
        • Zacchia M.
        • Dadar M.
        • Scala S.G.
        • et al.
        Neurocognitive and Hormonal Correlates of Voluntary Weight Loss in Humans.
        Cell metab. 2019; 29: 39-49
        • Hermann P.
        • Gál V.
        • Kóbor I.
        • Kirwan C.B.
        • Kovács P.
        • Kitka T.
        • et al.
        Efficacy of weight loss intervention can be predicted based on early alterations of fMRI food cue reactivity in the striatum.
        Neuroimage Clin. 2019; 23101803
        • MacLean P.S.
        • Higgins J.A.
        • Giles E.D.
        • Sherk V.D.
        • Jackman M.R.
        The role for adipose tissue in weight regain after weight loss.
        Obes Rev. 2015; 16: 45-54https://doi.org/10.1111/obr.12255
        • van Baak M.A.
        • Mariman E.C.M.
        Mechanisms of weight regain after weight loss - the role of adipose tissue.
        Nat Rev Endocrinol. 2019; 15: 274-287https://doi.org/10.1038/s41574-018-0148-4
        • Alemán J.O.
        • Bokulich N.A.
        • Swann J.R.
        • Walker J.M.
        • De Rosa J.C.
        • Battaglia T.
        • et al.
        Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of obese postmenopausal women.
        J Transl Med. 2018; 16: 244https://doi.org/10.1186/s12967-018-1619-z
        • Cotillard A.
        • Kennedy S.P.
        • Kong L.C.
        • Prifti E.
        • Pons N.
        • Le Chatelier E.
        • et al.
        Dietary intervention impact on gut microbial gene richness.
        Nature. 2013; 500: 585-588https://doi.org/10.1038/nature12480
        • van Nierop F.S.
        • Kulik W.
        • Endert E.
        • Schaap F.G.
        • Olde Damink S.W.
        • Romijn J.A.
        • et al.
        Effects of acute dietary weight loss on postprandial plasma bile acid responses in obese insulin resistant subjects.
        Clin Nutr. 2017; 36: 1615-1620https://doi.org/10.1016/j.clnu.2016.10.006
        • Leibel R.L.
        • Rosenbaum M.
        • Hirsch J
        Changes in energy expenditure resulting from altered body weight.
        N Engl J Med. 1995; 332: 621-628https://doi.org/10.1056/NEJM199503093321001
        • Müller M.J.
        • Enderle J.
        • Pourhassan M.
        • Braun W.
        • Eggeling B.
        • Lagerpusch M.
        • et al.
        Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited.
        Am J Clin Nutr. 2015; 102: 807-821https://doi.org/10.3945/ajcn.115.109173
        • Johanssen D.L.
        • Knuth N.D.
        • Huizenga R.
        • Rood J.
        • Ravussin E.
        • Hall K.D.
        Metabolic slowing with massive weight loss despite preservation of fat-free mass.
        J Clin Endocrinol Metab. 2012; 97: 2489-2496https://doi.org/10.1210/jc.2012-1444
        • Knuth N.D.
        • Johannsen D.L.
        • Tamboli R.A.
        • Marks-Shulman P.A.
        • Huizenga R.
        • Chen K.Y.1.
        • et al.
        Metabolic adaptation following massive weight loss is related to the degree of energy imbalance and changes in circulating leptin.
        Obesity (Silver Spring). 2014; 22: 2563https://doi.org/10.1002/oby.20900
        • Butte N.F.
        • Brandt M.L.
        • Wong W.W.
        • Liu Y.
        • Mehta N.R.
        • Wilson T.A.
        • et al.
        Energetic adaptations persist after bariatric surgery in severely obese adolescents.
        Obesity (Silver Spring). 2015; 23: 591-601https://doi.org/10.1002/oby.20994
        • Tam C.S.
        • Rigas G.
        • Heilbronn L.K.
        • Matisan T.
        • Probst Y.
        • Talbot M.
        Energy adaptations persist 2 years after sleeve gastrectomy and gastric bypass.
        Obes Surg. 2016; 26: 459-463https://doi.org/10.1007/s11695-015-1972-4
        • Bettini S.
        • Bordigato E.
        • Fabris R.
        • Serra R.
        • Dal Pra C.
        • Belligoli A.
        • et al.
        Modifications of Resting Energy Expenditure After Sleeve Gastrectomy.
        Obes Surg. 2018; 28: 2481-2486https://doi.org/10.1007/s11695-018-3190-3
        • Fothergill E.
        • Guo J.
        • Howard L.
        • Kerns J.C.
        • Knuth N.D.
        • Brychta R.
        • et al.
        Persistent metabolic adaptation 6 years after “The Biggest Loser” competition.
        Obesity (Silver Spring). 2016; 24: 1612-1619https://doi.org/10.1002/oby.21538
        • Roberts C.A.
        • Christiansen P.
        • Halford J.C.G.
        Tailoring pharmacotherapy to specific eating behaviours in obesity: can recommendations for personalised therapy be made from the current data?.
        Acta Diabetol. 2017; 54: 715-725
        • Morales I.
        • Berridge K.C.
        ‘Liking’and ‘wanting’in eating and food reward: brain mechanisms and clinical implications.
        PhysiolBehav. 2020; 227113152
        • Johnson A.W.
        Eating beyond metabolic need: how environmental cues influence feeding behavior.
        Trends Neurosci. 2013; 36: 101-109https://doi.org/10.1016/j.tins.2013.01.002
        • Hall K.D.
        Did the food environment cause the obesity epidemic?.
        Obesity (Silver Spring). 2018; 26: 11-13https://doi.org/10.1002/oby.22073
        • Berridge K.C.
        Food reward: brain substrates of wanting and liking.
        Neurosci Biobehav Rev. 1996; 20: 1-25https://doi.org/10.1016/0149-7634(95)00033-B
        • Berridge K.C.
        • Kringelbach M.L.
        Affective neuroscience of pleasure: reward in humans and animals.
        Psychopharmacol. 2008; 199: 457-480https://doi.org/10.1007/s00213-008-1099-6
        • Berridge K.C.
        ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders.
        Physiol Behavior. 2009; 97: 537-550https://doi.org/10.1016/j.physbeh.2009.02.044
        • Berridge K.C.
        • Kringelbach M.L.
        Pleasure systems in the brain.
        Neuron. 2015; 86: 646-664
        • Rogers P.J.
        Eating habits and appetite control: a psychobiological perspective.
        Proc Nutr Soc. 1999; 58: 59-67https://doi.org/10.1016/j.neuron.2015.02.018
        • Berridge K.C.
        • Ho C.Y.
        • Richard J.M.
        • DiFeliceantonio A.G.
        The tempted brain eats: pleasure and desire circuits in obesity and eating disorders.
        Brain Res. 2010; 1350: 43-64https://doi.org/10.1016/j.brainres.2010.04.003
        • Kirkham T.C.
        Cannabinoids and appetite: food craving and food pleasure.
        Int Rev Psychiatr. 2009; 21: 63-71https://doi.org/10.1080/09540260902782810
        • Chao A.
        • Grilo C.M.
        • White M.A.
        • Sinha R.
        Food cravings, food intake, and weight status in a community-based sample.
        Eat Behav. 2014; 15: 478-482https://doi.org/10.1016/j.eatbeh.2014.06.003
        • Nijs I.M.
        • Muris P.
        • Euser A.S.
        • Franken I.H.
        Differences in attention to food and food intake between overweight/obese and normal-weight females under conditions of hunger and satiety.
        Appetite. 2010; 54: 243-254
        • Massey A.
        • Hill A.J.
        Dieting and food craving. A descriptive, quasi-prospective study.
        Appetite. 2012; 58: 781-785https://doi.org/10.1016/j.appet.2012.01.020
        • Blundell J.E.
        • Cooling J.
        Routes to obesity: phenotypes, food choices and activity.
        Brit J Nutr. 2000; 83: S33-S38https://doi.org/10.1017/S0007114500000933
        • Stice E.
        • Burger K.
        Neural vulnerability factors for obesity.
        Clin Psychol Rev. 2019; 68: 38-53https://doi.org/10.1016/j.cpr.2018.12.002
        • Dimitropoulos A.
        • Tkach J.
        • Ho A.
        • Kennedy J.
        Greater corticolimbic activation to high-calorie food cues after eating in obese vs. normal-weight adults.
        Appetite. 2012; 58: 303-312https://doi.org/10.1016/j.appet.2011.10.014
        • Morys F.
        • Garcia-Garcia I.
        • Dagher A.
        Is obesity related to enhanced neural reactivity to visual food cues? A review and meta-analysis.
        Soc Cogn Affect Neurosci. 2020 Aug 12; ([Epub ahead of print])
        • Hardman C.
        • Jones A.
        • Burton S.
        • Duckworth J.
        • McGale L.
        • Mead B.
        • et al.
        Food-related attentional bias and its associations with appetitive motivation and body weight: a systematic review and meta-analysis.
        Appetite. 2020;
        • Geha P.Y.
        • Aschenbrenner K.
        • Felsted J.
        • O'Malley S.S.
        • Small D.M
        Altered hypothalamic response to food in smokers.
        Am J Clin Nutr. 2013; 97: 15-22https://doi.org/10.3945/ajcn.112.043307
        • Demos K.E.
        • Heatherton T.F.
        • Kelley W.M.
        Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior.
        J Neurosci. 2012; 32: 5549-5552https://doi.org/10.1523/JNEUROSCI.5958-11.2012
        • Simon J.J.
        • Becker A.
        • Sinno M.H.
        • Skunde M.
        • Bendszus M.
        • Preissl H.
        • et al.
        Neural food reward processing in successful and unsuccessful weight maintenance.
        Obesity (Silver Spring). 2018; 26: 895-902https://doi.org/10.1002/oby.22165