Advertisement

Beyond atrial fibrillation detection: how digital tools impact the care of patients with atrial fibrillation

  • Yutao Guo
    Correspondence
    Corresponding author at: Department of Pulmonary Vessel and Thrombotic Disease, Chinese PLA General Hospital 28 Fuxing Road, Haidian Street, Beijing,100853 China.
    Affiliations
    Medical School of Chinese PLA, Department of Pulmonary Vessel and Thrombotic Disease, Chinese PLA General Hospital, Beijing, China

    Liverpool Centre for Cardiovascular Sciences, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
    Search for articles by this author
  • Gregory Y.H. Lip
    Affiliations
    Medical School of Chinese PLA, Department of Pulmonary Vessel and Thrombotic Disease, Chinese PLA General Hospital, Beijing, China

    Liverpool Centre for Cardiovascular Sciences, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom

    Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
    Search for articles by this author
Published:September 13, 2021DOI:https://doi.org/10.1016/j.ejim.2021.08.026
      The modern treatment approach to AF has evolved with the identification of frequency and duration of AF episodes. Current guidelines recommend the 4S-AF approach to AF characterization and evaluation, following confirmation of the diagnosis [
      • Potpara TS
      • Lip GYH
      • Blomstrom-Lundqvist C
      • Boriani G
      • Van Gelder IC
      • Heidbuchel H
      • Hindricks G
      • Camm AJ.
      The 4S-AF Scheme (Stroke Risk; Symptoms; Severity of Burden; Substrate): a Novel Approach to In-Depth Characterization (Rather than Classification) of Atrial Fibrillation.
      ]. After this, an integrated or holistic approach to AF care is recommended [
      • Hindricks G
      • Potpara T
      • Dagres N
      • Arbelo E
      • Bax JJ
      • Blomström-Lundqvist C
      • Boriani G
      • Castella M
      • Dan GA
      • Dilaveris PE
      • Fauchier L
      • Filippatos G
      • Kalman JM
      • La Meir M
      • Lane DA
      • Lebeau JP
      • Lettino M
      • Lip GYH
      • Pinto FJ
      • Thomas GN
      • Valgimigli M
      • Van Gelder IC
      • Van Putte BP
      • Watkins CL
      2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS).
      ], given the improved outcomes with ABC pathway compliance [
      • Yoon M
      • Yang PS
      • Jang E
      • Yu HT
      • Kim TH
      • Uhm JS
      • Kim JY
      • Sung JH
      • Pak HN
      • Lee MH
      • Joung B
      • Lip GYH.
      Improved population-based clinical outcomes of patients with atrial fibrillation by compliance with the simple ABC (Atrial Fibrillation Better Care) pathway for integrated care management: a nationwide cohort study.
      ,
      • Romiti GF
      • Pastori D
      • Rivera-Caravaca JM
      • Ding WY
      • Gue YX
      • Menichelli D
      • Gumprecht J
      • Koziel M
      • Yang PS
      • Guo Y
      • Lip GYH
      • Proietti M.
      Adherence to the 'atrial fibrillation better care' pathway in patients with atrial fibrillation: impact on clinical outcomes-a systematic review and meta-analysis of 285,000 patients.
      ]. Given the increased stroke risk associated with the atrial high-rate episodes or subclinical AF burden (≥24 h) detected by implanted cardiac devices, oral anticoagulants should be considered in such patients. [
      • Hindricks G
      • Potpara T
      • Dagres N
      • Arbelo E
      • Bax JJ
      • Blomström-Lundqvist C
      • Boriani G
      • Castella M
      • Dan GA
      • Dilaveris PE
      • Fauchier L
      • Filippatos G
      • Kalman JM
      • La Meir M
      • Lane DA
      • Lebeau JP
      • Lettino M
      • Lip GYH
      • Pinto FJ
      • Thomas GN
      • Valgimigli M
      • Van Gelder IC
      • Van Putte BP
      • Watkins CL
      2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS).
      ,
      • Vitolo M
      • Imberti JF
      • Maisano A
      • Albini A
      • Bonini N
      • Valenti AC
      • Malavasi VL
      • Proietti M
      • Healey JS
      • Lip GY
      • Boriani G.
      Device-detected atrial high rate episodes and the risk of stroke/thrombo-embolism and atrial fibrillation incidence: a systematic review and meta-analysis.
      ,
      • Wachter R
      • Freedman B.
      Subclinical atrial fibrillation and the risk of recurrent ischemic stroke.
      ]
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Potpara TS
        • Lip GYH
        • Blomstrom-Lundqvist C
        • Boriani G
        • Van Gelder IC
        • Heidbuchel H
        • Hindricks G
        • Camm AJ.
        The 4S-AF Scheme (Stroke Risk; Symptoms; Severity of Burden; Substrate): a Novel Approach to In-Depth Characterization (Rather than Classification) of Atrial Fibrillation.
        Thromb Haemost. 2021; 121: 270-278
        • Hindricks G
        • Potpara T
        • Dagres N
        • Arbelo E
        • Bax JJ
        • Blomström-Lundqvist C
        • Boriani G
        • Castella M
        • Dan GA
        • Dilaveris PE
        • Fauchier L
        • Filippatos G
        • Kalman JM
        • La Meir M
        • Lane DA
        • Lebeau JP
        • Lettino M
        • Lip GYH
        • Pinto FJ
        • Thomas GN
        • Valgimigli M
        • Van Gelder IC
        • Van Putte BP
        • Watkins CL
        2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS).
        Eur Heart J. 2021; 42: 373-498
        • Yoon M
        • Yang PS
        • Jang E
        • Yu HT
        • Kim TH
        • Uhm JS
        • Kim JY
        • Sung JH
        • Pak HN
        • Lee MH
        • Joung B
        • Lip GYH.
        Improved population-based clinical outcomes of patients with atrial fibrillation by compliance with the simple ABC (Atrial Fibrillation Better Care) pathway for integrated care management: a nationwide cohort study.
        Thromb Haemost. 2019; 119: 1695-1703
        • Romiti GF
        • Pastori D
        • Rivera-Caravaca JM
        • Ding WY
        • Gue YX
        • Menichelli D
        • Gumprecht J
        • Koziel M
        • Yang PS
        • Guo Y
        • Lip GYH
        • Proietti M.
        Adherence to the 'atrial fibrillation better care' pathway in patients with atrial fibrillation: impact on clinical outcomes-a systematic review and meta-analysis of 285,000 patients.
        Thromb Haemost. 2021;
        • Vitolo M
        • Imberti JF
        • Maisano A
        • Albini A
        • Bonini N
        • Valenti AC
        • Malavasi VL
        • Proietti M
        • Healey JS
        • Lip GY
        • Boriani G.
        Device-detected atrial high rate episodes and the risk of stroke/thrombo-embolism and atrial fibrillation incidence: a systematic review and meta-analysis.
        Eur J Intern Med. 2021;
        • Wachter R
        • Freedman B.
        Subclinical atrial fibrillation and the risk of recurrent ischemic stroke.
        Thromb Haemost. 2021; 121: 697-699
        • Guo Y
        • Wang H
        • Zhang H
        • Liu T
        • Liang Z
        • Xia Y
        • Yan L
        • Xing Y
        • Shi H
        • Li S
        • Liu Y
        • Liu F
        • Feng M
        • Chen Y
        • Lip GYH.
        Mobile photoplethysmographic technology to detect atrial fibrillation.
        J Am Coll Cardiol. 2019; 74: 2365-2375
        • Perez MV
        • Mahaffey KW
        • Hedlin H
        • Rumsfeld JS
        • Garcia A
        • Ferris T
        • Balasubramanian V
        • Russo AM
        • Rajmane A
        • Cheung L
        • Hung G
        • Lee J
        • Kowey P
        • Talati N
        • Nag D
        • Gummidipundi SE
        • Beatty A
        • Hills MT
        • Desai S
        • Granger CB
        • Desai M
        • Turakhia MP.
        Large-scale assessment of a smartwatch to identify atrial fibrillation.
        N Engl J Med. 2019; 381: 1909-1917
        • Boriani G
        • Schnabel RB
        • Healey JS
        • Lopes RD
        • Verbiest-van Gurp N
        • Lobban T
        • Camm JA
        • Freedman B.
        Consumer-led screening for atrial fibrillation using consumer-facing wearables, devices and apps: a survey of health care professionals by AF-SCREEN international collaboration.
        Eur J Intern Med. 2020; 82: 97-104
        • Mairesse GH
        • Heidbüchel H.
        Consumer-led screening for atrial fibrillation: what is the next step?.
        Eur J Intern Med. 2021; 90: 16-18
        • Guo Y.
        A new paradigm of "real-time" stroke risk prediction and integrated care management in the digital health era: innovations using machine learning and artificial intelligence approaches.
        Thromb Haemost. 2021;
        • Lip GYH
        • Genaidy A
        • Tran G
        • Marroquin P
        • Estes C
        • Sloop S.
        Improving stroke risk prediction in the general population: a comparative assessment of common clinical rules, a new multimorbid index, and machine-learning-based algorithms.
        Thromb Haemost. 2021;
        • Lip GYH
        • Tran G
        • Genaidy A
        • Marroquin P
        • Estes C
        • Landsheftl J.
        Improving dynamic stroke risk prediction in non-anticoagulated patients with and without atrial fibrillation: Comparing common clinical risk scores and machine learning algorithms.
        Eur Heart J Qual Care Clin Outcomes. 2021;
        • Lip GYH
        • Tran G
        • Genaidy A
        • Marroquin P
        • Estes C.
        Revisiting the dynamic risk profile of cardiovascular/non-cardiovascular multimorbidity in incident atrial fibrillation patients and five cardiovascular/non-cardiovascular outcomes: a machine-learning approach.
        J Arrhythm. 2021; 37: 931-941
        • Xiong Z
        • Nash MP
        • Cheng E
        • Fedorov VV
        • Stiles MK
        • Zhao J.
        ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network.
        Physiol Meas. 2018; 39094006
        • Keidar N
        • Elul Y
        • Schuster A
        • Yaniv Y.
        Visualizing and Quantifying Irregular Heart Rate Irregularities to Identify Atrial Fibrillation Events.
        Front Physiol. 2021; 12637680
        • Mousavi S
        • Afghah F
        • Khadem F
        • Acharya UR.
        ECG Language processing (ELP): a new technique to analyze ECG signals.
        Comput Methods Programs Biomed. 2021; 202105959
        • Attia ZI
        • Noseworthy PA
        • Lopez-Jimenez F
        • Asirvatham SJ
        • Deshmukh AJ
        • Gersh BJ
        • Carter RE
        • Yao X
        • Rabinstein AA
        • Erickson BJ
        • Kapa S
        • Friedman PA.
        An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction.
        Lancet. 2019; 394: 861-867
        • Christopoulos G
        • Graff-Radford J
        • Lopez CL
        • Yao X
        • Attia ZI
        • Rabinstein AA
        • Petersen RC
        • Knopman DS
        • Mielke MM
        • Kremers W
        • Vemuri P
        • Siontis KC
        • Friedman PA
        • Noseworthy PA.
        Artificial intelligence-electrocardiography to predict incident atrial fibrillation: a population-based study.
        Circ Arrhythm Electrophysiol. 2020; 13e009355
        • Kwon S
        • Hong J
        • Choi EK
        • Lee E
        • Hostallero DE
        • Kang WJ
        • Lee B
        • Jeong ER
        • Koo BK
        • Oh S
        • Yi Y.
        Deep learning approaches to detect atrial fibrillation using photoplethysmographic signals: algorithms development study.
        JMIR Mhealth Uhealth. 2019; 7: e12770
        • Guo Y
        • Lane DA
        • Wang L
        • Zhang H
        • Wang H
        • Zhang W
        • Wen J
        • Xing Y
        • Wu F
        • Xia Y
        • Liu T
        • Wu F
        • Liang Z
        • Liu F
        • Zhao Y
        • Li R
        • Li X
        • Zhang L
        • Guo J
        • Burnside G
        • Chen Y
        • Lip GYH.
        Mobile health technology to improve care for patients with atrial fibrillation.
        J Am Coll Cardiol. 2020; 75: 1523-1534
        • Guo Y
        • Guo J
        • Shi X
        • Yao Y
        • Sun Y
        • Xia Y
        • Yu B
        • Liu T
        • Chen Y
        • Lip GYH.
        Mobile health technology-supported atrial fibrillation screening and integrated care: a report from the mAFA-II trial long-term extension cohort.
        Eur J Intern Med. 2020; 82: 105-111