Toxic nephropathy: Adverse renal effects caused by drugs

Published:October 01, 2021DOI:https://doi.org/10.1016/j.ejim.2021.09.008

      Abstract

      This is a brief overview of toxic nephropathy, which is an increasingly recognised problem with the continual introduction of new drugs and novel drug modalities, especially in oncology, and the risks associated with polypharmacy in many patients; although it is important to remember that it may not always be caused by a drug. It is also important to note that several possibly harmful drugs are now available without prescription (‘over-the-counter’) and can be purchased easily over the internet, including some poorly characterised herbal remedies. Knowing exactly what our patients are taking as medication is not always easy and patients often fail to mention drugs that may not have been prescribed by a doctor or recommended by a pharmacist. Moreover, patients with several comorbidities often require care from more than one doctor in other specialties, which can also lead to drug prescribing in isolation.
      This article will summarise some key aspects of drug nephrotoxicity and provide a few clinical pointers to consider, bearing in mind that there is rarely any antidote available, and effective treatment relies on early detection, prompt drug withdrawal, and supportive care. This short review is intended only as a primer to highlight some of the more practical aspects of toxic nephropathy; its content is based on a lecture delivered during the 2021 European Congress of Internal Medicine.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Ali H
        • Khan E
        • Ilahi I.
        Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation.
        J Chem-Ny. 2019; 2019: 1-14https://doi.org/10.1155/2019/6730305
        • Wei H
        • Hu Q
        • Wu J
        • Yao C
        • Xu L
        • Xing F
        • et al.
        Molecular mechanism of the increased tissue uptake of trivalent inorganic arsenic in mice with type 1 diabetes mellitus.
        Biochem Bioph Res Co. 2018; 504: 393-399https://doi.org/10.1016/j.bbrc.2018.06.029
        • Robles-Osorio ML
        • Sabath-Silva E
        • Sabath E.
        Arsenic-mediated nephrotoxicity.
        Renal Failure. 2015; 37: 542-547https://doi.org/10.3109/0886022x.2015.1013419
        • Lindskog C
        • Asplund A
        • Catrina A
        • Nielsen S
        • Rützler M.
        A systematic characterization of Aquaporin-9 expression in human normal and pathological tissues.
        J Histochem Cytochem. 2016; 64: 287-300https://doi.org/10.1369/0022155416641028
        • Lentini P
        • Zanoli L
        • Granata A
        • Signorelli SS
        • Castellino P
        • Dellaquila R.
        Kidney and heavy metals - the role of environmental exposure.
        Mol Med Rep. 2017; 15: 3413-3419https://doi.org/10.3892/mmr.2017.6389
        • Johri N
        • Jacquillet G
        • Unwin RJ.
        Heavy metal poisoning: the effects of cadmium on the kidney.
        Biometals. 2010; 23: 783-792https://doi.org/10.1007/s10534-010-9328-y
        • Menon S
        • Kirkendall ES
        • Nguyen H
        • Goldstein SL.
        Acute kidney injury associated with high nephrotoxic medication exposure leads to chronic kidney disease after 6 months.
        J Pediatr. 2014; https://doi.org/10.1016/j.jpeds.2014.04.058
        • Hall AM
        • Trepiccione F
        • Unwin RJ.
        Drug toxicity in the proximal tubule: new models, methods and mechanisms.
        Pediatr Nephrol. 2021; : 1-10https://doi.org/10.1007/s00467-021-05121-9
        • Knights KM
        • Rowland A
        • Miners JO.
        Renal drug metabolism in humans: the potential for drug–endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT).
        Brit J Clin Pharmaco. 2013; 76: 587-602https://doi.org/10.1111/bcp.12086
        • Bajaj P
        • Chowdhury SK
        • Yucha R
        • Kelly EJ
        • Xiao G.
        Emerging kidney models to investigate metabolism, transport and toxicity of drugs and xenobiotics.
        Drug Metab Dispos. 2018; 46dmd.118.082958https://doi.org/10.1124/dmd.118.082958
        • Chugh KS.
        Snake-bite-induced acute renal failure in India.
        Kidney Int. 2010; 35: 891-907https://doi.org/10.1038/ki.1989.70
        • Bubp J
        • Jen M
        • Matsuszewski K.
        Caring for glucose-6-phosphate dehydrogenase (G6PD)–deficient patients: implications for pharmacy.
        P&T. 2015; 40: 572-574
        • Petejova N
        • Martinek A
        • Zadrazil J
        • Teplan V.
        Acute toxic kidney injury.
        Renal Failure. 2019; 41: 576-594https://doi.org/10.1080/0886022x.2019.1628780
        • Mody H
        • Ramakrishnan V
        • Chaar M
        • Lezeau J
        • Rump A
        • Taha K
        • et al.
        A review on drug-induced nephrotoxicity: pathophysiological mechanisms, drug classes, clinical management, and recent advances in mathematical modeling and simulation approaches.
        Clin Pharm Drug Dev. 2020; 9: 896-909https://doi.org/10.1002/cpdd.879
        • Yang B
        • Xie Y
        • Guo M
        • Rosner MH
        • Yang H
        • Ronco C.
        Nephrotoxicity and Chinese herbal medicine.
        Clin J Am Soc Nephro. 2018; 13: 1605-1611https://doi.org/10.2215/cjn.11571017
        • Cook D
        • Brown D
        • Alexander R
        • March R
        • Morgan P
        • Satterthwaite G
        • et al.
        Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. 13. Nature Publishing Group, 2014: 419-431https://doi.org/10.1038/nrd4309
        • Kim S
        • LesherPerez SC
        • Kim B choul C
        • Yamanishi C
        • Labuz JM
        • Leung B
        • et al.
        Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip.
        Biofabrication. 2016; 8: 1-10https://doi.org/10.1088/1758-5090/8/1/015021
        • Wiraja C
        • Mori Y
        • Ichimura T
        • Hwang J
        • Xu C
        • Bonventre JV.
        Nephrotoxicity assessment with human kidney tubuloids using spherical nucleic acid-based mRNA nanoflares.
        Nano Lett. 2021; https://doi.org/10.1021/acs.nanolett.1c01840
        • Perazella MA.
        Pharmacology behind common drug nephrotoxicities.
        Clin J Am Soc Nephrol. 2018; CJN.00150118https://doi.org/10.2215/cjn.00150118
        • Martin M
        • Wilson FP.
        Utility of electronic medical record alerts to prevent drug nephrotoxicity.
        Clin J Am Soc Nephro. 2019; 14: 115-123https://doi.org/10.2215/cjn.13841217
        • Ong SW
        • Jassal SV
        • Porter EC
        • Min KK
        • Uddin A
        • Cafazzo JA
        • et al.
        Digital applications targeting medication safety in ambulatory high-risk CKD patients: randomized controlled clinical trial.
        Clin J Am Soc Nephro. 2021; 16: 532-542https://doi.org/10.2215/cjn.15020920
        • Kotsis F
        • Schultheiss U
        • Wuttke M
        • Schlosser P
        • Mielke J
        • Becker M
        • et al.
        Self-reported medication use and urinary drug metabolites in the German chronic kidney disease (GCKD) study.
        J Am Soc Nephrol. 2021; ASN.2021010063https://doi.org/10.1681/asn.2021010063
        • Dieterle F
        • Sistare F
        • Goodsaid F
        • Papaluca M
        • Ozer JS
        • Webb CP
        • et al.
        Renal biomarker qualification submission: a dialog between the FDA-EMEA and predictive safety testing consortium.
        Nat Biotechnol. 2010; 28: 455-462https://doi.org/10.1038/nbt.1625
        • Awdishu L
        • Mehta RL.
        The 6R's of drug induced nephrotoxicity.
        Bmc Nephrol. 2017; 18: 124https://doi.org/10.1186/s12882-017-0536-3
        • Sales GTM
        • Foresto RD.
        Drug-induced nephrotoxicity.
        Revista Da Assoc Médica Brasileira. 2020; 66: s82-s90https://doi.org/10.1590/1806-9282.66.s1.82
        • Ramsay LE
        • Silas JH
        • Ollerenshaw JD
        • Tucker GT
        • Phillips FC
        • Freestone S.
        Should the acetylator phenotype be determined when prescribing hydralazine for hypertension?.
        Eur J Clin Pharmacol. 1984; 26: 39-42https://doi.org/10.1007/bf00546706
        • Collins KS
        • Raviele ALJ
        • Elchynski AL
        • Woodcock AM
        • Zhao Y
        • Cooper-DeHoff RM
        • et al.
        Genotype-guided hydralazine therapy.
        Am J Nephrol. 2020; 51: 764-776https://doi.org/10.1159/000510433
        • Santoriello D
        • Bomback AS
        • Kudose S
        • Batal I
        • Stokes MB
        • Canetta P
        • et al.
        Anti-neutrophil cytoplasmic antibody associated glomerulonephritis complicating treatment with hydralazine.
        Kidney Int. 2021; 100: 440-446https://doi.org/10.1016/j.kint.2021.03.029
        • Hall AM
        • Edwards SG
        • Lapsley M
        • Connolly JO
        • Chetty K
        • O'Farrell S
        • et al.
        Subclinical tubular injury in HIV-infected individuals on antiretroviral therapy: a cross-sectional analysis.
        Am J Kidney Dis. 2009; 54: 1034-1042https://doi.org/10.1053/j.ajkd.2009.07.012
        • Woodward C
        • Hall A
        • Williams I
        • Madge S
        • Copas A
        • Nair D
        • et al.
        Tenofovir-associated renal and bone toxicity.
        Hiv Med. 2009; 10: 482-487https://doi.org/10.1111/j.1468-1293.2009.00716.x
        • Sood A
        • Agarwal K
        • Shukla J
        • Goel R
        • Dhir V
        • Bhattacharya A
        • et al.
        Bone scintigraphic patterns in patients of tumor induced osteomalacia.
        Indian J Nucl Medicine. 2013; 28: 173-175https://doi.org/10.4103/0972-3919.119541
        • Hall AM
        • Bass P
        • Unwin RJ.
        Drug-induced renal Fanconi syndrome.
        Qjm Int J Medicine. 2014; 107: 261-269https://doi.org/10.1093/qjmed/hct258
        • Lepist E
        • Ray AS.
        Renal transporter-mediated drug-drug interactions: are they clinically relevant?.
        J Clin Pharmacol. 2016; 56: S73-S81https://doi.org/10.1002/jcph.735
        • Katsuda H
        • Yamashita M
        • Katsura H
        • Yu J
        • Waki Y
        • Nagata N
        • et al.
        Protecting cisplatin-induced nephrotoxicity with cimetidine does not affect antitumor activity.
        Biol Pharm Bull. 2010; 33: 1867-1871https://doi.org/10.1248/bpb.33.1867
        • Chorley BN
        • Ellinger-Ziegelbauer H
        • Tackett M
        • Simutis FJ
        • Harrill AH
        • McDuffie J
        • et al.
        Urinary miRNA biomarkers of drug-induced kidney injury and their site specificity within the nephron.
        Toxicol Sci. 2020; 180: kfaa181https://doi.org/10.1093/toxsci/kfaa181
        • Ray AS
        • Fordyce MW
        • Hitchcock MJM.
        Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of human immunodeficiency virus.
        Antivir Res. 2016; 125: 63-70https://doi.org/10.1016/j.antiviral.2015.11.009
        • Dubach UC
        • Rosner B
        • Levy PS
        • Baumeler H-R
        • Müller A
        • Peyer A
        • et al.
        Epidemiological study in Switzerland.
        Kidney Int. 1978; 13: 41-49https://doi.org/10.1038/ki.1978.6
        • Nanra RS
        • Stuart-Taylor J
        • Leon de, AH
        • White KH.
        Analgesic nephropathy: etiology, clinical syndrome, and clinicopathologic correlations in Australia.
        Kidney Int. 1978; 13: 79-92https://doi.org/10.1038/ki.1978.11
        • Waddington F
        • Naunton M
        • Thomas J
        Paracetamol and analgesic nephropathy: are you kidneying me?.
        Int Medical Case Reports J. 2014; Volume 8: 1-5https://doi.org/10.2147/imcrj.s71471
        • Elseviers MM
        • Broe MED.
        Analgesic nephropathy.
        Drug Safety. 1999; 20: 15-24https://doi.org/10.2165/00002018-199920010-00003
        • Elseviers MM
        • Schepper AD
        • Corthouts R
        • Bosmans J-L
        • Cosyn L
        • Lins RL
        • et al.
        High diagnostic performance of CT scan for analgesic nephropathy in patients with incipient to severe renal failure.
        Kidney Int. 1995; 48: 1316-1323https://doi.org/10.1038/ki.1995.416
        • Koutsaimanis KG
        • Wardener de, HE
        Phenacetin nephropathy, with particular reference to the effect of surgery.
        Brit Med J. 1970; 4: 131-134https://doi.org/10.1136/bmj.4.5728.131
        • Kankuri E
        • Solatunturi E
        • Vapaatalo H.
        Effects of phenacetin and its metabolite p-phenetidine on COX-1 and COX-2 activities and expression in vitro.
        Thromb Res. 2003; 110: 299-303https://doi.org/10.1016/s0049-3848(03)00416-x
        • Mihatsch MJ
        • Khanlari B
        • Brunner FP.
        Obituary to analgesic nephropathy—an autopsy study.
        Nephrol Dial Transpl. 2006; 21: 3139-3145https://doi.org/10.1093/ndt/gfl390
        • Michielsen P
        • Heinemann L
        • Mihatsch M
        • Schnülle P
        • Graf H
        • Koch K-M.
        Non-phenacetin analgesics and analgesic nephropathy clinical assessment of high users from a case-control study.
        Nephrol Dial Transpl. 2008; 24: 1253-1259https://doi.org/10.1093/ndt/gfn643
        • Amatruda JG
        • Katz R
        • Peralta CA
        • Estrella MM
        • Sarathy H
        • Fried LF
        • et al.
        Association of non-steroidal anti-inflammatory drugs with kidney health in ambulatory older adults.
        J Am Geriatr Soc. 2021; 69: 726-734https://doi.org/10.1111/jgs.16961
        • Moledina DG
        • Perazella MA.
        The challenges of acute interstitial nephritis: time to standardize.
        Kidney360. 2021; 2: 1049-1053https://doi.org/10.34067/kid.0001742021
        • Fernandez-Juarez G
        • Perez JV
        • Caravaca-Fontán F
        • Quintana L
        • Shabaka A
        • Rodriguez E
        • et al.
        Duration of treatment with corticosteroids and recovery of kidney function in acute interstitial nephritis.
        Clin J Am Soc Nephro. 2018; 13: 1851-1858https://doi.org/10.2215/cjn.01390118
        • Cortazar FB
        • Kibbelaar ZA
        • Glezerman IG
        • Abudayyeh A
        • Mamlouk O
        • Motwani SS
        • et al.
        Clinical features and outcomes of immune checkpoint inhibitor-associated AKI: a multicenter study.
        J Am Soc Nephrol. 2020; 31: 435-446https://doi.org/10.1681/asn.2019070676
        • Perazella MA
        • Shirali AC.
        Immune checkpoint inhibitor nephrotoxicity: what do we know and what should we do?.
        Kidney Int. 2020; 97: 62-74https://doi.org/10.1016/j.kint.2019.07.022