Association between air temperature, air pollution and hospital admissions for pulmonary embolism and venous thrombosis in Italy

Published:October 23, 2021DOI:https://doi.org/10.1016/j.ejim.2021.09.019

      Highlights

      • An association between environmental stressors and venous thromboembolism is not firmly established.
      • We analyzed hospital discharge data for the entire Italy during 2006–2015.
      • An adverse effect of low temperatures in winter/autumn on pulmonary embolism was found.
      • There was also a negative impact of high temperatures in summer on pulmonary embolism.
      • No short-term effect of air pollution on these outcomes was observed.

      Abstract

      Background

      Previous studies reported a link between short-term exposure to environmental stressors (air pollution and air temperature) and atherothrombotic cardiovascular diseases. However, only few of them reported consistent associations with venous thromboembolism (VTE). Our aim was to estimate the association between daily air temperature and particulate matter (PM) air pollution with hospital admissions for pulmonary embolism (PE) and venous thrombosis (VT) at national level in Italy.

      Methods

      We collected daily hospital PE and VT admissions from the Italian Ministry of Health during 2006–2015 in all the 8,084 municipalities of Italy, and we merged them with air temperature and daily PM10 concentrations estimated by satellite-based spatiotemporal models. First, we applied multivariate Poisson regression models at province level. Then, we obtained national overall effects by random-effects meta-analysis.

      Results

      This analysis was conducted on 219,952 PE and 275,506 VT hospitalizations. Meta-analytical results showed weak associations between the two exposures and the study outcomes in the full year analysis. During autumn and winter, PE hospital admissions increased by 1.07% (95% confidence intervals [CI]: 0.21%; 1.92%) and 0.96% (95% CI: 0.07%; 1.83%) respectively, per 1 °C decrement of air temperature in the previous 10 days (lag 0–10). In summer we observed adverse effects at high temperatures, with a 1% (95% CI: 0.10%; 1.91%) increasing risk per 1 °C increment. We found no association between VT and cold temperatures.

      Conclusion

      Results show a significant effect of air temperature on PE hospitalizations in the cold seasons and summer. No effect of particulate matter was detected.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Roth G.A.
        • Mensah G.A.
        • CO Johnson
        • Addolorato G.
        • Ammirati E.
        • et al.
        Baddour. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: update From the GBD 2019 Study.
        J Am Coll Cardiol. 2020; 76: 2982-3021
      1. EpiCentro. Epidemiology and Biostatistics Laboratory of the Italian National Institute of Health, https://www.epicentro.iss.it/cardiovascolare/; [Accessed 15 March 2021].

      2. European Society of Cardiology. European Heart Network. Fighting cardiovascular disease – a blueprint for EU action 2020, https://www.escardio.org/static-file/Escardio/Advocacy/Documents/2020_ESC-EHN-blueprint_digital_edition.pdf; 2020 [Accessed 16 March 2021].

        • Schulman S.
        • Ageno W.
        • Konstantinides S.V.
        Venous thromboembolism: past, present and future.
        Thromb Haemost. 2017; 117: 1219-1229
        • Schünemann H.J.
        • Cushman M.
        • Burnett A.E.
        • Kahn S.R.
        • Beyer-Westendorf J.
        • et al.
        Spencer, American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients.
        Blood Adv. 2018; 2: 3198-3225
        • Dominici F.
        • Peng R.D.
        • Bell M.L.
        • Pham L.
        • McDermott A.
        • Zeger S.L.
        • et al.
        Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases.
        J Am Med Assoc. 2006; 295: 1127-1134
      3. US EPA. Integrated science assessment (ISA) for particulate matter (Final report, 2019). Washington, DC: U.S. Environ. Prot. Agency; 2019. EPA/600/R-19/188, 2019 https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534.

        • Mitis F.
        • Iavarone I.
        • Martuzzi M.
        Health impact of ozone in 13 Italian cities.
        Epidemiol Prev. 2007; 31: 323-332
        • Brook R.D.
        • Rajagopalan S.
        • Pope C.A.
        • Brook J.R.
        • Bhatnagar A.
        • Diez-Roux A.V.
        • et al.
        Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the american heart association.
        Circulation. 2010; 121: 2331-2378
        • Mannucci P.M.
        • Harari S.
        • Franchini M.
        Novel evidence for a greater burden of ambient air pollution on cardiovascular disease.
        Haematologica. 2019; 104: 2349-2357
        • Renzi M.
        • Stafoggia M.
        • Michelozzi P.
        • Davoli M.
        • Forastiere F.
        • Solimini A.G.
        Short-term exposure to PM2.5 and risk of venous thromboembolism: a case-crossover study.
        Thromb Res. 2020; 190: 52-57
        • Damnjanović Z.
        • Jovanović M.
        • Stojanović M.
        Correlation between the climatic factors and the pathogenesis of deep vein thrombosis.
        Hippokratia. 2013; 17: 203-206
        • Törő K.
        • Pongrácz R.
        • Bartholy J.
        • Aletta Váradi T.
        • Marcsa B.
        • Szilágyi B.
        • et al.
        Evaluation of meteorological and epidemiological characteristics of fatal pulmonary embolism.
        Int J Biometeorol. 2016; 60: 351-359
        • De Miguel-Díez J.
        • Jiménez-García R.
        • López De Andrés A.
        • Hernández-Barrera V.
        • Carrasco-Garrido P.
        • Monreal M.
        • et al.
        Analysis of environmental risk factors for pulmonary embolism: a case-crossover study (2001-2013).
        Eur J Intern Med. 2016; 31: 55-61
        • Dentali F.
        • Ageno W.
        • Rancan E.
        • Donati A.V.
        • Galli L.
        • Squizzato A.
        • et al.
        Seasonal and monthly variability in the incidence of venous thromboembolism: a systematic review and a meta-analysis of the literature.
        Thromb Haemost. 2011; 106: 439-447
        • Stein P.D.
        • Kayali F.
        • Olson R.E.
        Analysis of occurrence of venous thromboembolic disease in the four seasons.
        Am J Cardiol. 2004; 93: 511-513
        • White R.H.
        The epidemiology of venous thromboembolism.
        Circulation. 2003; 107: 4-8
        • Zöller B.
        • Li X.
        • Sundquist J.
        • Sundquist K.
        Risk of pulmonary embolism in patients with autoimmune disorders: a nationwide follow-up study from Sweden.
        Lancet. 2012; 379: 244-249
        • Stafoggia M.
        • Bellander T.
        • Bucci S.
        • Davoli M.
        • De Hoogh K.
        • De Donato F.
        • et al.
        Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model.
        Environ Int. 2019; 124: 170-179
        • Stafoggia M.
        • Schwartz J.
        • Badaloni C.
        • Bellander T.
        • Alessandrini E.
        • Cattani G.
        • et al.
        Estimation of daily PM10 concentrations in Italy (2006–2012) using finely resolved satellite data, land use variables and meteorology.
        Environ Int. 2017; 99: 234-244
        • Kloog I.
        • Chudnovsky A.
        • Koutrakis P.
        • Schwartz J.
        Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts.
        USA, Sci Total Environ. 2012; 432: 85-92
        • Stafoggia M.
        • Colais P.
        • Serinelli M.
        • EpiAir Gruppo collaborativo
        Methods of statistical analysis to evaluate the short term effects of air pollution in the EpiAir Project.
        Epidemiol Prev. 2009; 33 (Suppl 1): 53-63
        • Nimako K.
        • Poloniecki J.
        • Draper A.
        • Rahman T.
        Seasonal variability and meteorological factors: retrospective study of the incidence of pulmonary embolism from a large United Kingdom teaching hospital.
        Respir Care. 2012; 57: 1267-1272
        • Brown H.K.
        • Simpson A.J.
        • Murchison J.T.
        The influence of meteorological variables on the development of deep venous thrombosis.
        Thromb Haemost. 2009; 102: 676-682
        • Lu Y.
        • Zeger S.L.
        On the equivalence of case-crossover and time series methods in environmental epidemiology.
        Biostatistics. 2007; 8: 337-344
        • Aug A.
        • Stone V.
        • Brogan
        Partners ambient particle inhalation and the cardiovascular system: Potential Mechanisms Author(s): Ken Donaldson, Vicki Stone.
        Anthony Seaton and William MacNee. 2014; 109: 523-527
        • Franchini M.
        • Guida A.
        • Tufano A.
        • Coppola A.
        Air pollution, vascular disease and thrombosis: linking clinical data and pathogenic mechanisms.
        J Thromb Haemost. 2012; 10: 2438-2451
        • Franchini M.
        • Mannucci P.M.
        Thrombogenicity and cardiovascular effects of ambient air pollution.
        Blood. 2011; 118: 2405-2412
        • Vermylen J.
        • Hoylaerts M.F.
        The procoagulant effects of air pollution.
        J Thromb Haemost. 2007; 5: 250-251
        • Martinelli N.
        • Girelli D.
        • Cigolini D.
        • Sandri M.
        • Ricci G.
        • Rocca G.
        • et al.
        Access rate to the emergency department for venous thromboembolism in relationship with coarse and fine particulate matter air pollution.
        PLoS ONE. 2012; 7: e34831
        • Milojevic A.
        • Wilkinson P.
        • Armstrong B.
        • Bhaskaran K.
        • Smeeth L.
        • Hajat S.
        Short-term effects of air pollution on a range of cardiovascular events in England and Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality.
        Heart. 2014; 100: 1093-1098
        • Kloog I.
        • Zanobetti A.
        • Nordio F.
        • Coull B.A.
        • Baccarelli A.A.
        • Schwartz J.
        Effects of airborne fine particles (PM2.5) on deep vein thrombosis admissions in the northeastern United States.
        J Thromb Haemost. 2015; 13: 768-774
        • Dales R.E.
        • Cakmak S.
        • Vidal C.B.
        Air pollution and hospitalization for venous thromboembolic disease in Chile.
        J Thromb Haemost. 2010; 8: 669-674
        • Baccarelli A.
        • Zanobetti A.
        • Martinelli I.
        • Grillo P.
        • Hou L.
        • Giacomini S.
        • et al.
        Effects of exposure to air pollution on blood coagulation.
        J Thromb Haemost. 2007; 5: 252-260
        • Dentali F.
        • Manfredini R.
        • Ageno W.
        Seasonal variability of venous thromboembolism.
        Curr Opin Pulm Med. 2009; 15: 403-407
        • Signorelli S.S.
        • Ferrante M.
        • Gaudio A.
        • Fiore V.
        Deep vein thrombosis related to environment (Review).
        Mol Med Rep. 2017; 15: 3445-3448
        • Fantoni C.
        • Dentali F.
        • Ageno W.
        Chronobiologic aspects of venous thromboembolism.
        Heart Fail Clin. 2017; 13: 691-696
        • Chiu H.H.
        • Whittaker P
        Venous Thromboembolism in an industrial North American City: temporal distribution and association with particulate matter air pollution.
        PLoS One. 2013; 8: e68829
        • Öztuna F.
        • Özsu S.
        • Topbaş M.
        • Bülbül Y.
        • Koşucu P.
        • Özlü T.
        Meteorological parameters and seasonal variations in pulmonary thromboembolism.
        Am J Emerg Med. 2008; 26: 1035-1041
        • Bilora F.
        • Manfredini R.
        • Petrobelli F.
        • Vettore G.
        • Boccioletti V.
        • Pomerri F.
        Chronobiology of non fatal pulmonary thromboembolism.
        Panminerva Med. 2001; 43: 7-10
        • Manfredini R.
        • Imberti D.
        • Gallerani M.
        • Verso M.
        • Pistelli R.
        • Ageno W.
        • Agnelli G.
        Seasonal variation in the occurrence of venous thromboembolism: data from the MASTER Registry.
        Clin Appl Thromb. 2009; 15: 309-315
        • Colais P.
        • Serinelli M.
        • Faustini A.
        • Stafoggia M.
        • Randi G.
        • Tessari R.
        • et al.
        Air pollution and urgent hospital admissions in nine Italian cities. Results of the EpiAir Project.
        Epidemiol Prev. 2009; 33 (Suppl): 77-94