Glucagon-like peptide-1 receptor agonists and sodium−glucose cotransporter 2 inhibitors for cardiovascular and renal protection: A treatment approach far beyond their glucose-lowering effect

  • Ricardo Gómez-Huelgas
    Correspondence
    Corresponding author at: Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Avenida de Carlos Haya, s/n, 29010 Málaga, Spain.
    Affiliations
    Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Málaga, Spain

    Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
    Search for articles by this author
  • Jaime Sanz-Cánovas
    Affiliations
    Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Málaga, Spain
    Search for articles by this author
  • Lidia Cobos-Palacios
    Affiliations
    Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Málaga, Spain
    Search for articles by this author
  • Almudena López-Sampalo
    Affiliations
    Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Málaga, Spain
    Search for articles by this author
  • Luis M. Pérez-Belmonte
    Affiliations
    Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Málaga, Spain

    Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain

    Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
    Search for articles by this author
Published:November 16, 2021DOI:https://doi.org/10.1016/j.ejim.2021.11.008

      Highlights

      • GLP-1 receptor agonists reduce atherosclerotic CVD and albuminuria.
      • SGLT-2 inhibitors have also shown benefits in heart failure and renal outcomes.
      • Glycemic control and cardiorenal prevention are both recommended in T2D management.

      Abstract

      Findings from cardiovascular outcome trials on certain newer glucose-lowering drugs have shown clear cardiovascular and renal benefits. In this review, we provide an updated overview of glucagon-like peptide-1 (GLP-1) receptor agonists and sodium−glucose cotransporter 2 (SGLT-2) inhibitors in terms of cardiovascular and renal protection. Both drugs have been described as diabetes/disease-modifying drugs.
      There is robust evidence on the benefits of GLP-1 receptor agonists in renal disease and atherosclerotic cardiovascular disease—especially in stroke—which are mainly explained by their antiproteinuric effect. However, this class of drugs has only shown neutral effects on heart failure and further studies are necessary in order to assess their role in this disease.
      SGLT-2 inhibitors have shown strong benefits in heart failure hospitalizations and renal outcomes, mainly through limiting glomerular filtration rate deterioration, regardless of the presence of diabetes. Nonetheless, their effect on the prevention of major adverse atherosclerotic cardiovascular events and cardiovascular mortality seems to be limited to patients with type 2 diabetes and established cardiovascular disease.
      Evidence on the cardiovascular and renal benefits of GLP-1 receptor agonists and SGLT-2 inhibitors have significantly modified management plans and treatment choices for patients with type 2 diabetes. There is now a focus on a multifactorial approach that goes beyond the glucose-lowering effect of these drugs, which are the preferred choice in routine clinical practice.
      According to the current evidence, a patient-focused approach that includes both individualized glycemic control and cardiorenal prevention using GLP-1 receptor agonists and SGLT-2 inhibitors with proven cardiovascular and renal benefits is believed to be the best strategy for achieving the treatment goals of patients with type 2 diabetes. Despite the strong cardiovascular and renal benefits of these drugs, further research is required in order to clarify questions that remain unanswered.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Seshasai S.R.K.
        • Kaptoge S.
        • Thompson A.
        • Di Angelantonio M.
        • Gao P.
        • Sarwar N.
        • et al.
        Diabetes Mellitus, fasting glucose, and risk of cause-specific death.
        N Engl J Med. 2011; 364: 829-841https://doi.org/10.1056/NEJMoa1008862
        • Collaboration Emerging Risk Factors
        • E Di Angelantonio
        • Kaptoge S
        • Wormser D
        • Willeit P
        • Butterworth AS
        • Bansal N
        • et al.
        Association of Cardiometabolic Multimorbidity With Mortality.
        JAMA. 2015; 314: 52-60https://doi.org/10.1001/jama.2015.7008
        • Rawshani A.
        • Rawshani A.
        • Franzén S.
        • Eliasson B.
        • Svensson A.M.
        • Miftaraj M.
        • et al.
        Mortality and cardiovascular disease in type 1 and type 2 diabetes.
        N Engl J Med. 2017; 376: 1407-1418https://doi.org/10.1056/NEJMoa1608664
        • Juhaeri J.
        • Gao S.
        • Dai W.S.
        Incidence rates of heart failure, stroke, and acute myocardial infarction among Type 2 diabetic patients using insulin glargine and other insulin.
        Pharmacoepidemiol Drug Saf. 2009; 18: 497-503https://doi.org/10.1002/pds.1741
        • Lara-Rojas C.M.
        • Pérez-Belmonte L.M.
        • López-Carmona M.D.
        • Guijarro-Merino R.
        • Bernal-López M.R.
        • Gómez-Huelgas R.
        National trends in diabetes mellitus hospitalisation in Spain 1997–2010: analysis of over 5.4 millions of admissions.
        Eur J Intern Med. 2019; 60: 83-89https://doi.org/10.1016/j.ejim.2018.04.005
        • Pérez-Belmonte L.M.
        • Lara-Rojas C.M.
        • López-Carmona M.D.
        • Guijarro-Merino R.
        • Bernal-López M.R.
        • Gómez-Huelgas R.
        National trends in heart failure hospitalization rates in patients with diabetes mellitus: 1997-2010.
        Rev Esp Cardiol (Engl Ed). 2018; 71: 408-410https://doi.org/10.1016/j.rec.2017.04.028
        • Koye D.N.
        • Shaw J.E.
        • Reid C.M.
        • Atkins R.C.
        • Reutens A.T.
        • Magliano D.J.
        Incidence of chronic kidney disease among people with diabetes: a systematic review of observational studies.
        Diabet Med. 2017; 34: 887-901https://doi.org/10.1111/dme.13324
      1. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group.
        Lancet. 1998; 352: 837-853
        • Study Group ACCORD
        Nine-Year Effects of 3.7 Years of Intensive Glycemic Control on Cardiovascular Outcomes.
        Diabetes Care. 2016; 39: 701-708https://doi.org/10.2337/dc15-2283
        • Collaborative Group ADVANCE
        • Patel A
        • MacMahon S
        • Chalmers J
        • Neal B
        • Billot L
        • Woodward M
        • et al.
        Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2008; 358: 2560-2572https://doi.org/10.1056/NEJMoa0802987
        • Duckworth W.
        • Abraira C.
        • Moritz T.
        • Reda D.
        • Emanuele N.
        • Reaven P.D.
        • et al.
        Glucose control and vascular complications in veterans with type 2 diabetes.
        N Engl J Med. 2009; 360: 129-139https://doi.org/10.1056/NEJMoa0808431
        • Gæde P.
        • Lund-Andersen H.
        • Parving H.-.H.
        • Pedersen O.
        Effect of a multifactorial intervention on mortality in type 2 diabetes.
        N Engl J Med. 2008; 358: 580-591
        • Nissen S.E.
        • Wolski K.
        Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes.
        N Engl J Med. 2007; 356: 2457-2471https://doi.org/10.1056/NEJMoa072761
        • Pfeffer M.A.
        • Claggett B.
        • Diaz R.
        • Dickstein K.
        • Gerstein H.C.
        • Køber L.V.
        • et al.
        Lixisenatide in patients with type 2 diabetes and acute coronary syndrome.
        N Engl J Med. 2015; 373: 2247-2257https://doi.org/10.1056/NEJMoa1509225
        • Marso S.P.
        • Daniels G.H.
        • Brown-Frandsen K.
        • Kristensen P.
        • Mann J.F.
        • Nauck M.A.
        • et al.
        Liraglutide and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2016; 375: 311-322https://doi.org/10.1056/NEJMoa1603827
        • Marso S.P.
        • Bain S.C.
        • Consoli A.
        • Eliaschewitz F.G.
        • Jódar E.
        • Leiter L.A.
        • et al.
        Semaglutide and Cardiovascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2016; 375: 1834-1844https://doi.org/10.1056/NEJMoa1607141
        • Holman R.R.
        • Bethel M.A.
        • Mentz R.J.
        • Thompson V.P.
        • Lokhnygina Y.
        • Buse J.B.
        • et al.
        Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2017; 377: 1228-1239https://doi.org/10.1056/NEJMoa1612917
        • Hernandez A.F.
        • Green J.B.
        • Janmohamed S.
        • Sr D'Agostino RB
        • Granger C.B.
        • Jones N.P.
        • et al.
        Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial.
        Lancet. 2018; 392: 1519-1529https://doi.org/10.1016/S0140-6736(18)32261-X
        • Husain M.
        • Birkenfeld A.L.
        • Donsmark M.
        • Dungan K.
        • Eliaschewitz F.G.
        • Franco D.R.
        • et al.
        Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2019; 381: 841-851https://doi.org/10.1056/NEJMoa1901118
        • Gerstein H.C.
        • Colhoun H.M.
        • Dagenais G.R.
        • Diaz R.
        • Lakshmanan M.
        • Pais P.
        • et al.
        Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial.
        Lancet. 2019; 394: 121-130https://doi.org/10.1016/S0140-6736(19)31149-3
        • Gerstein H.C.
        • Sattar N.
        • Rosenstock J.
        • Ramasundarahettige C.
        • Pratley R.
        • Lopes R.D.
        • et al.
        Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes.
        N Engl J Med. 2021 Jun 28; https://doi.org/10.1056/NEJMoa2108269
        • Zinman B.
        • Wanner C.
        • Lachin J.M.
        • Fitchett D.
        • Bluhmki E.
        • Hantel S.
        • et al.
        Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128https://doi.org/10.1056/NEJMoa1504720
        • Neal B.
        • Perkovic V.
        • Mahaffey K.W.
        • de Zeeuw D.
        • Fulcher G.
        • Erondu N.
        • et al.
        Canagliflozin and cardiovascular and renal events in type 2 diabetes.
        N Engl J Med. 2017; 377: 644-657https://doi.org/10.1056/NEJMoa1611925
        • Wiviott S.D.
        • Raz I.
        • Bonaca M.P.
        • Mosenzon O.
        • Kato E.T.
        • Cahn A.
        • et al.
        Dapagliflozin and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2019; 380: 347-357https://doi.org/10.1056/NEJMoa1812389
        • Cannon C.P.
        • Pratley R.
        • Dagogo-Jack S.
        • Mancuso J.
        • Huyck S.
        • Masiukiewicz U.
        • et al.
        Cardiovascular outcomes with ertugliflozin in type 2 diabetes.
        N Engl J Med. 2020; 383: 1425-1435https://doi.org/10.1056/NEJMoa2004967
        • Davies M.J.
        • D'Alessio D.A.
        • Fradkin J.
        • Kernan W.N.
        • Mathieu C.
        • Mingrone G.
        • et al.
        Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American diabetes association (ADA) and the European association for the study of diabetes (EASD).
        Diabetes Care. 2018; 41: 2669-2701https://doi.org/10.2337/dci18-0033
        • Mosenzon O.
        • Del Prato S.
        • Schechter M.
        • Leiter L.A.
        • Ceriello A.
        • DeFronzo R.A.
        • et al.
        From glucose lowering agents to disease/diabetes modifying drugs: a "SIMPLE" approach for the treatment of type 2 diabetes.
        Cardiovasc Diabetol. 2021; 20: 92https://doi.org/10.1186/s12933-021-01281-y
        • Varin E.M.
        • McLean B.A.
        • Lovshin J.A.
        Glucagon-like peptide-1 receptor agonists in adult patients with type 2 diabetes: review of cardiovascular outcome trials.
        Can J Diabetes. 2020; 44: 68-77https://doi.org/10.1016/j.jcjd.2019.08.011
        • Kristensen S.L.
        • Rorth R.
        • Jhund P.S.
        • Docherty K.F.
        • Sattar N.
        • Preiss D.
        • et al.
        Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials.
        Lancet Diabetes Endocrinol. 2019; 7: 776-785https://doi.org/10.1016/S2213-8587(19)30249-9
        • Górriz J.L.
        • Soler M.J.
        • Navarro-González J.F.
        • García-Carro C.
        • Puchades M.J.
        • D'Marco L.
        • et al.
        GLP-1 receptor agonists and diabetic kidney disease: a call of attention to nephrologists.
        J Clin Med. 2020; 9: 947https://doi.org/10.3390/jcm9040947
        • Greco E.V.
        • Russo G.
        • Giandalia A.
        • Viazzi F.
        • Pontremoli R.
        • De Cosmo S.
        GLP-1 receptor agonists and kidney protection.
        Medicina (Kaunas). 2019; 55: 233https://doi.org/10.3390/medicina55060233
        • Nauck M.A.
        • Meier J.J.
        • Cavender M.A.
        • Abd El Aziz M.
        • Drucker D.J
        Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.
        Circulation. 2017; 136: 849-870https://doi.org/10.1161/CIRCULATIONAHA.117.028136
        • Thomas M.C.
        The potential and pitfalls of GLP-1 receptor agonists for renal protection in type 2 diabetes.
        Diabetes Metab. 2017; 43: 2S20-2S27https://doi.org/10.1016/S1262-3636(17)30069-1
        • Claggett B.
        • Lachin J.M.
        • Hantel S.
        • Fitchett D.
        • Inzucchi S.E.
        • Woerle H.J.
        • et al.
        Long-term benefit of empagliflozin on life expectancy in patients with type 2 diabetes mellitus and established cardiovascular disease.
        Circulation. 2018; 138: 1599-1601https://doi.org/10.1161/CIRCULATIONAHA.118.033810
        • Koufakis T.
        • Papanas N.
        • Dimitriadis G.
        • Zebekakis P.
        • Kotsa K.
        Interpreting the results of the VERTIS-CV trial: is this the end of the "class effect" perspective?.
        J Diabetes. 2020; 12: 942-945https://doi.org/10.1111/1753-0407.13105
        • Li W.J.
        • Chen X.Q.
        • Xu L.L.
        • Li Y.Q.
        • Luo B.H.
        SGLT2 inhibitors and atrial fibrillation in type 2 diabetes: a systematic review with meta-analysis of 16 randomized controlled trials.
        Cardiovasc Diabetol. 2020; 19: 130https://doi.org/10.1186/s12933-020-01105-5
        • Perkovic V.
        • Jardine M.J.
        • Neal B.
        • Bompoint S.
        • Heerspink H.J.L.
        • Charytan D.M.
        • et al.
        Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.
        N Engl J Med. 2019; 380: 2295-2306https://doi.org/10.1056/NEJMoa1811744
        • Bhatt D.L.
        • Szarek M.
        • Pitt B.
        • Cannon C.P.
        • Leiter L.A.
        • McGuire D.K.
        • et al.
        Sotagliflozin in patients with diabetes and chronic kidney disease.
        N Engl J Med. 2021; 384: 129-139https://doi.org/10.1056/NEJMoa2030186
        • Bhatt D.L.
        • Szarek M.
        • Steg P.G.
        • Cannon C.P.
        • Leiter L.A.
        • McGuire D.K.
        • et al.
        Sotagliflozin in patients with diabetes and recent worsening heart failure.
        N Engl J Med. 2021; 384: 117-128https://doi.org/10.1056/NEJMoa2030183
        • McMurray J.J.
        • Solomon S.D.
        • Inzucchi S.E.
        • Køber L.
        • Kosiborod M.N.
        • Martinez F.A.
        • et al.
        Dapagliflozin in patients with heart failure and reduced ejection fraction.
        N Engl J Med. 2019; 381: 1995-2008https://doi.org/10.1056/NEJMoa1911303
        • Packer M.
        • Anker S.D.
        • Butler J.
        • Filippatos G.
        • Pocock S.J.
        • Carson P.
        • et al.
        Cardiovascular and renal outcomes with empagliflozin in heart failure.
        N Engl J Med. 2020; 383: 1413-1424https://doi.org/10.1056/NEJMoa2022190
        • Anker S.D.
        • Butler J.
        • Filippatos G.S.
        • Jamal W.
        • Salsali A.
        • Schnee J.
        • et al.
        Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved Trial.
        Eur J Heart Fail. 2019; 21: 1279-1287https://doi.org/10.1002/ejhf.1596
        • Anker S.D.
        • Butler J.
        • Filippatos G.
        • Ferreira J.P.
        • Bocchi E.
        • Böhm M.
        • et al.
        Empagliflozin in Heart Failure with a Preserved Ejection Fraction.
        N Engl J Med. 2021; 385: 1451-1461https://doi.org/10.1056/NEJMoa2107038
        • Heerspink H.J.L.
        • Stefánsson B.V.
        • Correa-Rotter R.
        • Chertow G.M.
        • Greene T.
        • Hou F.F.
        • et al.
        Dapagliflozin in patients with chronic kidney disease.
        N Engl J Med. 2020; 383: 1436-1446https://doi.org/10.1056/NEJMoa2024816
      2. Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl Sci. 20;5:632-44. doi:10.1016/j.jacbts.2020.02.004.

        • Mazidi M.
        • Rezaie P.
        • Gao H.K.
        • Kengne A.P.
        Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients.
        J Am Heart Assoc. 2017; 6e004007https://doi.org/10.1161/JAHA.116.004007
        • Cai X.
        • Yang W.
        • Gao X.
        • Chen Y.
        • Zhou L.
        • Zhang S.
        • et al.
        The Association Between the Dosage of SGLT2 Inhibitor and weight reduction in type 2 diabetes patients: a meta-analysis.
        Obesity (Silver Spring). 2018; 26: 70-80https://doi.org/10.1002/oby.22066
        • Chino Y.
        • Samukawa Y.
        • Sakai S.
        • Nakai Y.
        • Yamaguchi J.
        • Nakanishi T.
        • et al.
        SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria.
        Biopharm Drug Dispos. 2014; 35: 391-404https://doi.org/10.1002/bdd.1909
        • Verma S.
        • McMurray J.J.V.
        SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review.
        Diabetologia. 2018; 61: 2108-2117https://doi.org/10.1007/s00125-018-4670-7
        • L Lipscombe
        • Booth G.
        • Butalia S.
        • Dasgupta K.
        • Eurich D.T.
        • Goldenberg R.
        • et al.
        • Diabetes Canada Clinical Practice Guidelines Expert Committee
        Pharmacologic Glycemic Management of Type 2 Diabetes in Adults.
        Can J Diabetes. 2018; 42: S88-S103https://doi.org/10.1016/j.jcjd.2017.10.034
        • Garber A.J.
        • Handelsman Y.
        • Grunberger G.
        • Einhorn D.
        • Abrahamson M.J.
        • Barzilay J.I.
        • et al.
        Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm - 2020 EXECUTIVE SUMMARY.
        Endocr Pract. 2020; 26: 107-139https://doi.org/10.4158/CS-2019-0472
        • Das S.R.
        • Everett B.M.
        • Birtcher K.K.
        • Brown J.M.
        • Januzzi Jr, J.L.
        • Kalyani R.R.
        • et al.
        Expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: a report of the american college of cardiology solution set oversight committee.
        J Am Coll Cardiol. 2020; 76: 1117-1145https://doi.org/10.1016/j.jacc.2020.05.037
        • American Diabetes Association
        Cardiovascular disease and risk management: standards of medical care in diabetes–2021.
        Diabetes Care. 2021; 44: S125-S150https://doi.org/10.2337/dc21-S010
        • Elashoff M.
        • Matveyenko A.V.
        • Gier B.
        • Elashoff R.
        • Butler P.C.
        Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies.
        Gastroenterology. 2011; 141: 150-156https://doi.org/10.1053/j.gastro.2011.02.018
        • Palmer S.C.
        • Tendal B.
        • Mustafa R.A.
        • Vandvik P.O.
        • Li S.
        • Hao Q.
        • et al.
        Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials.
        BMJ. 2021; 372: 4573https://doi.org/10.1136/bmj.m4573
        • Wewer Albrechtsen N.J.
        • Albrechtsen R.
        • Bremholm L.
        • Svendsen B.
        • Kuhre R.E.
        • Poulsen S.S.
        • et al.
        Glucagon-like peptide 1 receptor signaling in acinar cells causes growth-dependent release of pancreatic enzymes.
        Cell Rep. 2016; 17: 2845-2856https://doi.org/10.1016/j.celrep.2016.11.051
        • Hirji I.
        • Andersson S.W.
        • Guo Z.
        • Hammar N.
        • Gomez-Caminero A.
        Incidence of genital infection among patients with type 2 diabetes in the UK General Practice Research Database.
        J Diabetes Complications. 2012; 26: 501-505https://doi.org/10.1016/j.jdiacomp.2012.06.012
        • Dave C.V.
        • Schneeweiss S.
        • Kim D.
        • Fralick M.
        • Tong A.
        • Patorno E.
        Sodium-glucose cotransporter-2 inhibitors and the risk for severe urinary tract infections: a population-based cohort study.
        Ann Intern Med. 2019; 171: 248-256https://doi.org/10.7326/M18-3136
        • Bersoff-Matcha S.J.
        • Chamberlain C.
        • Cao C.
        • Kortepeter C.
        • Chong W.H.
        Fournier gangrene associated with sodium-glucose cotransporter-2 inhibitors: a review of spontaneous postmarketing cases.
        Ann Intern Med. 2019; 170: 764-769https://doi.org/10.7326/M19-0085
        • Nathan D.M.
        • Buse J.B.
        • Kahn S.E.
        • Krause-Steinrauf H.
        • Larkin M.E.
        • Staten M.
        • et al.
        Rationale and design of the glycemia reduction approaches in diabetes: a comparative effectiveness study (GRADE).
        Diabetes Care. 2013; 36: 2254-2261https://doi.org/10.2337/dc13-0356
      3. Nathan D.M., Buse J.B., Kahn S.E., Krause-Steinrauf H., Larkin M.E., Staten M., et al. Results of the glycemia reduction approaches in diabetes-a comparative effectiveness (GRADE) Study. American Diabetes Association 81st Scientific Sessions. 2021.

        • Sharma A.
        • Pagidipati N.J.
        • Califf R.M.
        • McGuire D.K.
        • Green J.B.
        • Demets D.
        • et al.
        Impact of regulatory guidance on evaluating cardiovascular risk of new glucose-lowering therapies to treat type 2 diabetes mellitus: lessons learned and future directions.
        Circulation. 2020; 141: 843-862https://doi.org/10.1161/CIRCULATIONAHA.119.041022