Highlights
- •GLP-1 receptor agonists reduce atherosclerotic CVD and albuminuria.
- •SGLT-2 inhibitors have also shown benefits in heart failure and renal outcomes.
- •Glycemic control and cardiorenal prevention are both recommended in T2D management.
Abstract
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to European Journal of Internal MedicineReferences
- Diabetes Mellitus, fasting glucose, and risk of cause-specific death.N Engl J Med. 2011; 364: 829-841https://doi.org/10.1056/NEJMoa1008862
- Association of Cardiometabolic Multimorbidity With Mortality.JAMA. 2015; 314: 52-60https://doi.org/10.1001/jama.2015.7008
- Mortality and cardiovascular disease in type 1 and type 2 diabetes.N Engl J Med. 2017; 376: 1407-1418https://doi.org/10.1056/NEJMoa1608664
- Incidence rates of heart failure, stroke, and acute myocardial infarction among Type 2 diabetic patients using insulin glargine and other insulin.Pharmacoepidemiol Drug Saf. 2009; 18: 497-503https://doi.org/10.1002/pds.1741
- National trends in diabetes mellitus hospitalisation in Spain 1997–2010: analysis of over 5.4 millions of admissions.Eur J Intern Med. 2019; 60: 83-89https://doi.org/10.1016/j.ejim.2018.04.005
- National trends in heart failure hospitalization rates in patients with diabetes mellitus: 1997-2010.Rev Esp Cardiol (Engl Ed). 2018; 71: 408-410https://doi.org/10.1016/j.rec.2017.04.028
- Incidence of chronic kidney disease among people with diabetes: a systematic review of observational studies.Diabet Med. 2017; 34: 887-901https://doi.org/10.1111/dme.13324
- Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group.Lancet. 1998; 352: 837-853
- Nine-Year Effects of 3.7 Years of Intensive Glycemic Control on Cardiovascular Outcomes.Diabetes Care. 2016; 39: 701-708https://doi.org/10.2337/dc15-2283
- Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes.N Engl J Med. 2008; 358: 2560-2572https://doi.org/10.1056/NEJMoa0802987
- Glucose control and vascular complications in veterans with type 2 diabetes.N Engl J Med. 2009; 360: 129-139https://doi.org/10.1056/NEJMoa0808431
- Effect of a multifactorial intervention on mortality in type 2 diabetes.N Engl J Med. 2008; 358: 580-591
- Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes.N Engl J Med. 2007; 356: 2457-2471https://doi.org/10.1056/NEJMoa072761
- Lixisenatide in patients with type 2 diabetes and acute coronary syndrome.N Engl J Med. 2015; 373: 2247-2257https://doi.org/10.1056/NEJMoa1509225
- Liraglutide and cardiovascular outcomes in type 2 diabetes.N Engl J Med. 2016; 375: 311-322https://doi.org/10.1056/NEJMoa1603827
- Semaglutide and Cardiovascular outcomes in patients with type 2 diabetes.N Engl J Med. 2016; 375: 1834-1844https://doi.org/10.1056/NEJMoa1607141
- Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes.N Engl J Med. 2017; 377: 1228-1239https://doi.org/10.1056/NEJMoa1612917
- Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial.Lancet. 2018; 392: 1519-1529https://doi.org/10.1016/S0140-6736(18)32261-X
- Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes.N Engl J Med. 2019; 381: 841-851https://doi.org/10.1056/NEJMoa1901118
- Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial.Lancet. 2019; 394: 121-130https://doi.org/10.1016/S0140-6736(19)31149-3
- Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes.N Engl J Med. 2021 Jun 28; https://doi.org/10.1056/NEJMoa2108269
- Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.N Engl J Med. 2015; 373: 2117-2128https://doi.org/10.1056/NEJMoa1504720
- Canagliflozin and cardiovascular and renal events in type 2 diabetes.N Engl J Med. 2017; 377: 644-657https://doi.org/10.1056/NEJMoa1611925
- Dapagliflozin and cardiovascular outcomes in type 2 diabetes.N Engl J Med. 2019; 380: 347-357https://doi.org/10.1056/NEJMoa1812389
- Cardiovascular outcomes with ertugliflozin in type 2 diabetes.N Engl J Med. 2020; 383: 1425-1435https://doi.org/10.1056/NEJMoa2004967
- Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American diabetes association (ADA) and the European association for the study of diabetes (EASD).Diabetes Care. 2018; 41: 2669-2701https://doi.org/10.2337/dci18-0033
- From glucose lowering agents to disease/diabetes modifying drugs: a "SIMPLE" approach for the treatment of type 2 diabetes.Cardiovasc Diabetol. 2021; 20: 92https://doi.org/10.1186/s12933-021-01281-y
- Glucagon-like peptide-1 receptor agonists in adult patients with type 2 diabetes: review of cardiovascular outcome trials.Can J Diabetes. 2020; 44: 68-77https://doi.org/10.1016/j.jcjd.2019.08.011
- Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials.Lancet Diabetes Endocrinol. 2019; 7: 776-785https://doi.org/10.1016/S2213-8587(19)30249-9
- GLP-1 receptor agonists and diabetic kidney disease: a call of attention to nephrologists.J Clin Med. 2020; 9: 947https://doi.org/10.3390/jcm9040947
- GLP-1 receptor agonists and kidney protection.Medicina (Kaunas). 2019; 55: 233https://doi.org/10.3390/medicina55060233
- Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.Circulation. 2017; 136: 849-870https://doi.org/10.1161/CIRCULATIONAHA.117.028136
- The potential and pitfalls of GLP-1 receptor agonists for renal protection in type 2 diabetes.Diabetes Metab. 2017; 43: 2S20-2S27https://doi.org/10.1016/S1262-3636(17)30069-1
- Long-term benefit of empagliflozin on life expectancy in patients with type 2 diabetes mellitus and established cardiovascular disease.Circulation. 2018; 138: 1599-1601https://doi.org/10.1161/CIRCULATIONAHA.118.033810
- Interpreting the results of the VERTIS-CV trial: is this the end of the "class effect" perspective?.J Diabetes. 2020; 12: 942-945https://doi.org/10.1111/1753-0407.13105
- SGLT2 inhibitors and atrial fibrillation in type 2 diabetes: a systematic review with meta-analysis of 16 randomized controlled trials.Cardiovasc Diabetol. 2020; 19: 130https://doi.org/10.1186/s12933-020-01105-5
- Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.N Engl J Med. 2019; 380: 2295-2306https://doi.org/10.1056/NEJMoa1811744
- Sotagliflozin in patients with diabetes and chronic kidney disease.N Engl J Med. 2021; 384: 129-139https://doi.org/10.1056/NEJMoa2030186
- Sotagliflozin in patients with diabetes and recent worsening heart failure.N Engl J Med. 2021; 384: 117-128https://doi.org/10.1056/NEJMoa2030183
- Dapagliflozin in patients with heart failure and reduced ejection fraction.N Engl J Med. 2019; 381: 1995-2008https://doi.org/10.1056/NEJMoa1911303
- Cardiovascular and renal outcomes with empagliflozin in heart failure.N Engl J Med. 2020; 383: 1413-1424https://doi.org/10.1056/NEJMoa2022190
- Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved Trial.Eur J Heart Fail. 2019; 21: 1279-1287https://doi.org/10.1002/ejhf.1596
- Empagliflozin in Heart Failure with a Preserved Ejection Fraction.N Engl J Med. 2021; 385: 1451-1461https://doi.org/10.1056/NEJMoa2107038
- Dapagliflozin in patients with chronic kidney disease.N Engl J Med. 2020; 383: 1436-1446https://doi.org/10.1056/NEJMoa2024816
Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl Sci. 20;5:632-44. doi:10.1016/j.jacbts.2020.02.004.
- Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients.J Am Heart Assoc. 2017; 6e004007https://doi.org/10.1161/JAHA.116.004007
- The Association Between the Dosage of SGLT2 Inhibitor and weight reduction in type 2 diabetes patients: a meta-analysis.Obesity (Silver Spring). 2018; 26: 70-80https://doi.org/10.1002/oby.22066
- SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria.Biopharm Drug Dispos. 2014; 35: 391-404https://doi.org/10.1002/bdd.1909
- SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review.Diabetologia. 2018; 61: 2108-2117https://doi.org/10.1007/s00125-018-4670-7
- Pharmacologic Glycemic Management of Type 2 Diabetes in Adults.Can J Diabetes. 2018; 42: S88-S103https://doi.org/10.1016/j.jcjd.2017.10.034
- Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm - 2020 EXECUTIVE SUMMARY.Endocr Pract. 2020; 26: 107-139https://doi.org/10.4158/CS-2019-0472
- Expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: a report of the american college of cardiology solution set oversight committee.J Am Coll Cardiol. 2020; 76: 1117-1145https://doi.org/10.1016/j.jacc.2020.05.037
- Cardiovascular disease and risk management: standards of medical care in diabetes–2021.Diabetes Care. 2021; 44: S125-S150https://doi.org/10.2337/dc21-S010
- Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies.Gastroenterology. 2011; 141: 150-156https://doi.org/10.1053/j.gastro.2011.02.018
- Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials.BMJ. 2021; 372: 4573https://doi.org/10.1136/bmj.m4573
- Glucagon-like peptide 1 receptor signaling in acinar cells causes growth-dependent release of pancreatic enzymes.Cell Rep. 2016; 17: 2845-2856https://doi.org/10.1016/j.celrep.2016.11.051
- Incidence of genital infection among patients with type 2 diabetes in the UK General Practice Research Database.J Diabetes Complications. 2012; 26: 501-505https://doi.org/10.1016/j.jdiacomp.2012.06.012
- Sodium-glucose cotransporter-2 inhibitors and the risk for severe urinary tract infections: a population-based cohort study.Ann Intern Med. 2019; 171: 248-256https://doi.org/10.7326/M18-3136
- Fournier gangrene associated with sodium-glucose cotransporter-2 inhibitors: a review of spontaneous postmarketing cases.Ann Intern Med. 2019; 170: 764-769https://doi.org/10.7326/M19-0085
- Rationale and design of the glycemia reduction approaches in diabetes: a comparative effectiveness study (GRADE).Diabetes Care. 2013; 36: 2254-2261https://doi.org/10.2337/dc13-0356
Nathan D.M., Buse J.B., Kahn S.E., Krause-Steinrauf H., Larkin M.E., Staten M., et al. Results of the glycemia reduction approaches in diabetes-a comparative effectiveness (GRADE) Study. American Diabetes Association 81st Scientific Sessions. 2021.
- Impact of regulatory guidance on evaluating cardiovascular risk of new glucose-lowering therapies to treat type 2 diabetes mellitus: lessons learned and future directions.Circulation. 2020; 141: 843-862https://doi.org/10.1161/CIRCULATIONAHA.119.041022