Highlights
- •SARS-CoV-2 infection promotes the failure of the counter-regulatory RAS axis.
- •The failure of RAS is mediated by the binding of the spike protein of the virus with ACE2 (causing malfunction of these receptors).
- •The consequent accumulation of Ang II can directly contribute to development of high BP in the acute phase of infection.
- •Accrued data suggest that acute rise in BP is an independent predictor of bad outcome in COVID-19 patients.
- •A similar mechanism has been postulated to explain the rise in BP following COVID-19 vaccination (“Spike Effect”).
Abstract
Graphical abstract

Keywords
1. Introduction
Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020 180:934–43. 10.1001/jamainternmed.2020.0994.
Fitero A., Bungau S.G., Tit D.M., Endres L., Khan S.A., Bungau A.F. et al. Comorbidities, associated diseases, and risk assessment in COVID-19-A Systematic Review. Int J Clin Pract. 2022, 2022:1571826. 10.1155/2022/1571826.
Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020 180:934–43. 10.1001/jamainternmed.2020.0994.
- Richardson S.
- Hirsch J.S.
- Narasimhan M.
- Crawford J.M.
- McGinn T.
- Davidson K.W.
- et al.
- Angeli F.
- Masnaghetti S.
- Visca D.
- Rossoni A.
- Taddeo S.
- Biagini F.
- et al.
- Angeli F.
- Zappa M.
- Oliva F.M.
- Spanevello A.
- Verdecchia P.
- Angeli F.
- Reboldi G.
- Trapasso M.
- Zappa M.
- Spanevello A.
- Verdecchia P.
- Angeli F.
- Reboldi G.
- Trapasso M.
- Santilli G.
- Zappa M.
- Verdecchia P.
2. SARS-CoV-2 infection and blood pressure
Centers for Disease Control and Prevention. Science Brief: evidence used to update the list of underlying medical conditions that increase a person's risk of severe illness from COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/underlying-evidence-table.html (Accessed on September 15, 2021).
- Richardson S.
- Hirsch J.S.
- Narasimhan M.
- Crawford J.M.
- McGinn T.
- Davidson K.W.
- et al.
- Swamy S.
- Koch C.A.
- Hannah-Shmouni F.
- Schiffrin E.L.
- Klubo-Gwiezdzinska J.
- Gubbi S.
- Chen G.
- Li X.
- Gong Z.
- Xia H.
- Wang Y.
- Wang X.
- et al.
- Angeli F.
- Zappa M.
- Oliva F.M.
- Spanevello A.
- Verdecchia P.

- Vicenzi M.
- Di Cosola R.
- Ruscica M.
- Ratti A.
- Rota I.
- Rota F.
- et al.
3. Raise in blood pressure following COVID-19 vaccination
Centers for Disease Control and Prevention. Science Brief: evidence used to update the list of underlying medical conditions that increase a person's risk of severe illness from COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/underlying-evidence-table.html (Accessed on September 15, 2021).
Ch'ng C.C., Ong L.M., Wong K.M. Changes in Blood Pressure After Pfizer/Biontech Sars-Cov-2 Vaccination. ResearchSquare, 10.21203/rs3rs-1018154/v1. 2022.
Ch'ng C.C., Ong L.M., Wong K.M. Changes in Blood Pressure After Pfizer/Biontech Sars-Cov-2 Vaccination. ResearchSquare, 10.21203/rs3rs-1018154/v1. 2022.
- Lehmann K.
- Bouhanick B.
- Brusq C.
- Bongard V.
- Tessier S.
- Montastruc J.L.
- Senard J.M.
- et al.
- Bouhanick B.
- Brusq C.
- Bongard V.
- Tessier S.
- Montastruc J.L.
- Senard J.M.
- et al.
- Bouhanick B.
- Brusq C.
- Bongard V.
- Tessier S.
- Montastruc J.L.
- Senard J.M.
- et al.
- Syrigos N.
- Kollias A.
- Grapsa D.
- Fyta E.
- Kyriakoulis K.G.
- Vathiotis I.
- et al.
- Simonini M.
- Scarale M.G.
- Tunesi F.
- Moro M.
- Serio C.D.
- Manunta P.
- et al.
- Simonini M.
- Scarale M.G.
- Tunesi F.
- Moro M.
- Serio C.D.
- Manunta P.
- et al.
- Simonini M.
- Scarale M.G.
- Tunesi F.
- Moro M.
- Serio C.D.
- Manunta P.
- et al.
- Simonini M.
- Scarale M.G.
- Tunesi F.
- Moro M.
- Serio C.D.
- Manunta P.
- et al.
- Simonini M.
- Scarale M.G.
- Tunesi F.
- Moro M.
- Serio C.D.
- Manunta P.
- et al.
- Simonini M.
- Scarale M.G.
- Tunesi F.
- Moro M.
- Serio C.D.
- Manunta P.
- et al.
- Angeli F.
- Reboldi G.
- Trapasso M.
- Santilli G.
- Zappa M.
- Verdecchia P.
- Angeli F.
- Reboldi G.
- Trapasso M.
- Santilli G.
- Zappa M.
- Verdecchia P.

- Angeli F.
- Reboldi G.
- Trapasso M.
- Santilli G.
- Zappa M.
- Verdecchia P.
4. Mechanisms
4.1 The role of ACE2
- Angeli F.
- Verdecchia P.
- Balestrino A.
- Bruschi C.
- Ceriana P.
- Chiovato L.
- et al.



- De Hert E.
- Bracke A.
- Lambeir A.M.
- Angeli F.
- Reboldi G.
- Trapasso M.
- Zappa M.
- Spanevello A.
- Verdecchia P.
- Chen G.
- Li X.
- Gong Z.
- Xia H.
- Wang Y.
- Wang X.
- et al.
- Watanabe Y.
- Mendonca L.
- Allen E.R.
- Howe A.
- Lee M.
- Allen J.D.
- et al.

- Duarte M.
- Pelorosso F.
- Nicolosi L.N.
- Salgado M.V.
- Vetulli H.
- Aquieri A.
- et al.
- Angeli F.
- Verdecchia P.
- Balestrino A.
- Bruschi C.
- Ceriana P.
- Chiovato L.
- et al.
- Angeli F.
- Verdecchia P.
- Balestrino A.
- Bruschi C.
- Ceriana P.
- Chiovato L.
- et al.
- Angeli F.
- Verdecchia P.
- Balestrino A.
- Bruschi C.
- Ceriana P.
- Chiovato L.
- et al.
- Angeli F.
- Verdecchia P.
- Balestrino A.
- Bruschi C.
- Ceriana P.
- Chiovato L.
- et al.
- Puskarich M.A.
- Cummins N.W.
- Ingraham N.E.
- Wacker D.A.
- Reilkoff R.A.
- Driver B.E.
- et al.
- Puskarich M.A.
- Ingraham N.E.
- Merck L.H.
- Driver B.E.
- Wacker D.A.
- Black L.P.
- et al.
- Puskarich M.A.
- Cummins N.W.
- Ingraham N.E.
- Wacker D.A.
- Reilkoff R.A.
- Driver B.E.
- et al.
- Puskarich M.A.
- Ingraham N.E.
- Merck L.H.
- Driver B.E.
- Wacker D.A.
- Black L.P.
- et al.
4.2 The role of other angiotensinases
Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020 180:934–43. 10.1001/jamainternmed.2020.0994.
- Angeli F.
- Masnaghetti S.
- Visca D.
- Rossoni A.
- Taddeo S.
- Biagini F.
- et al.
- Guo L.
- Shi Z.
- Zhang Y.
- Wang C.
- Do Vale Moreira N.C.
- Zuo H.
- et al.
- Tabrizian T.
- Hataway F.
- Murray D.
- Shariat-Madar Z.
- Kehoe K.
- Noels H.
- Theelen W.
- De Hert E.
- Xu S.
- Verrijken A.
- et al.
4.2.1 SARS-CoV-2 infection
- De Hert E.
- Bracke A.
- Lambeir A.M.
4.2.2 COVID-19 vaccination
- Angeli F.
- Reboldi G.
- Trapasso M.
- Zappa M.
- Spanevello A.
- Verdecchia P.
- Angeli F.
- Reboldi G.
- Trapasso M.
- Zappa M.
- Spanevello A.
- Verdecchia P.

Wallace M., Oliver S. COVID-19 mRNA vaccines in adolescents and young adults: benefit-risk discussion. Corporate Authors(s): United States Advisory Committee on Immunization Practices (US ACIP) COVID-19 Vaccines Work Group Conference Author(s): US ACIP Meeting, Atlanta, GA, May 12, 2021 Published June 23, 2021 https://stackscdcgov/view/cdc/108331. 2021.
https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-12-16/02-COVID-See-508.pdf (Accessed on September 15, 2022).
5. Conclusions
- Zappa M.
- Verdecchia P.
- Angeli F.
- Zappa M.
- Verdecchia P.
- Spanevello A.
- Angeli F.
- Angeli F.
- Zappa M.
- Oliva F.M.
- Spanevello A.
- Verdecchia P.
- Angeli F.
- Reboldi G.
- Trapasso M.
- Zappa M.
- Spanevello A.
- Verdecchia P.
- Angeli F.
- Reboldi G.
- Trapasso M.
- Zappa M.
- Spanevello A.
- Verdecchia P.
- Angeli F.
- Reboldi G.
- Trapasso M.
- Santilli G.
- Zappa M.
- Verdecchia P.
- Angeli F.
- Reboldi G.
- Trapasso M.
- Santilli G.
- Zappa M.
- Verdecchia P.
References
Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020 180:934–43. 10.1001/jamainternmed.2020.0994.
- Clinical features of patients infected with 2019 novel coronavirus in Wuhan.China. Lancet. 2020; 395: 497-506https://doi.org/10.1016/S0140-6736(20)30183-5
- Hypertension and COVID-19.Am J Hypertens. 2020; 33: 373-374https://doi.org/10.1093/ajh/hpaa057
Fitero A., Bungau S.G., Tit D.M., Endres L., Khan S.A., Bungau A.F. et al. Comorbidities, associated diseases, and risk assessment in COVID-19-A Systematic Review. Int J Clin Pract. 2022, 2022:1571826. 10.1155/2022/1571826.
- Prevalence of comorbidities in deceased patients with COVID-19: a systematic review.Medicine (Baltimore). 2022; 101: e30246https://doi.org/10.1097/MD.0000000000030246
- Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region.Italy. JAMA. 2020; 323: 1574-1581https://doi.org/10.1001/jama.2020.5394
- Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China.JAMA. 2020; 323: 1061-1069https://doi.org/10.1001/jama.2020.1585
- Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area.JAMA. 2020; https://doi.org/10.1001/jama.2020.6775
- Electrocardiographic features of patients with COVID-19 pneumonia.Eur J Intern Med. 2020; 78: 101-106https://doi.org/10.1016/j.ejim.2020.06.015
- RAAS Inhibitors and Risk of Covid-19.N Engl J Med. 2020; 383: 1990-1991https://doi.org/10.1056/NEJMc2030446
- Hypertension and COVID-19: current Evidence and Perspectives.High Blood Press Cardiovasc Prev. 2022; 29: 115-123https://doi.org/10.1007/s40292-022-00506-9
- Severity of COVID-19: the importance of being hypertensive.Monaldi archives for chest disease = Archivio Monaldi per le malattie del torace. 2020; 90https://doi.org/10.4081/monaldi.2020.1372
- Electrocardiographic features of patients with COVID-19: one year of unexpected manifestations.Eur J Intern Med. 2022; 95: 7-12https://doi.org/10.1016/j.ejim.2021.10.006
- Blood pressure control and adverse outcomes of COVID-19 infection in patients with concomitant hypertension in Wuhan, China.Hypertens Res. 2020; 43: 1267-1276https://doi.org/10.1038/s41440-020-00541-w
- Coronavirus disease 2019 and cardiovascular complications: focused clinical review.J Hypertens. 2021; 39: 1282-1292https://doi.org/10.1097/HJH.0000000000002819
- Pharmacotherapy for hypertensive urgency and emergency in COVID-19 patients.Expert Opin Pharmacother. 2022; 23: 235-242https://doi.org/10.1080/14656566.2021.1990264
- Blood pressure increase during hospitalization for COVID-19.Eur J Intern Med. 2022; https://doi.org/10.1016/j.ejim.2022.06.010
- [Hypertension after COVID-19 vaccination].G Ital Cardiol (Rome). 2022; 23: 10-14https://doi.org/10.1714/3715.37055
- COVID-19, vaccines and deficiency of ACE2 and other angiotensinases.Eur J Intern Med. 2022; (Closing the loop on the "Spike effect")https://doi.org/10.1016/j.ejim.2022.06.015
- SARS-CoV-2 vaccines: lights and shadows.Eur J Intern Med. 2021; 88: 1-8https://doi.org/10.1016/j.ejim.2021.04.019
- Blood Pressure Increase following COVID-19 Vaccination: a Systematic Overview and Meta-Analysis.J Cardiovasc Dev Dis. 2022; 9https://doi.org/10.3390/jcdd9050150
- Developing optimal search strategies for detecting clinically sound and relevant causation studies in EMBASE.BMC Med Inform Decis Mak. 2005; 5: 8https://doi.org/10.1186/1472-6947-5-8
- Does the inclusion of grey literature influence estimates of intervention effectiveness reported in meta-analyses?.Lancet. 2000; 356: 1228-1231https://doi.org/10.1016/S0140-6736(00)02786-0
Centers for Disease Control and Prevention. Science Brief: evidence used to update the list of underlying medical conditions that increase a person's risk of severe illness from COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/underlying-evidence-table.html (Accessed on September 15, 2021).
- Common cardiovascular risk factors and in-hospital mortality in 3,894 patients with COVID-19: survival analysis and machine learning-based findings from the multicentre Italian CORIST Study.Nutr Metab Cardiovasc Dis. 2020; 30: 1899-1913https://doi.org/10.1016/j.numecd.2020.07.031
- Hypertension and COVID-19: updates from the era of vaccines and variants.J Clin Transl Endocrinol. 2022; 27100285https://doi.org/10.1016/j.jcte.2021.100285
- Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis.Int J Infect Dis. 2020; 94: 91-95https://doi.org/10.1016/j.ijid.2020.03.017
- Hypertension in patients with coronavirus disease 2019 (COVID-19): a pooled analysis.Pol Arch Intern Med. 2020; 130: 304-309https://doi.org/10.20452/pamw.15272
- Does COVID-19 Cause Hypertension?.Angiology. 2022; 73: 682-687https://doi.org/10.1177/00033197211053903
- Hypertension as a sequela in patients of SARS-CoV-2 infection.PLoS ONE. 2021; 16e0250815https://doi.org/10.1371/journal.pone.0250815
- The liaison between respiratory failure and high blood pressure: evidence from COVID-19 patients.Eur Respir J. 2020; 56https://doi.org/10.1183/13993003.01157-2020
- Stage III Hypertension in Patients After mRNA-Based SARS-CoV-2 Vaccination.Hypertension. 2021; 77: e56-ee7https://doi.org/10.1161/HYPERTENSIONAHA.121.17316
- Short term blood pressure alterations in recently COVID-19 vaccinated patients.Eur J Intern Med. 2022; 96: 115-116https://doi.org/10.1016/j.ejim.2021.11.017
Ch'ng C.C., Ong L.M., Wong K.M. Changes in Blood Pressure After Pfizer/Biontech Sars-Cov-2 Vaccination. ResearchSquare, 10.21203/rs3rs-1018154/v1. 2022.
- Hypertension and Covid-19 vaccines: are there any differences between the different vaccines? A safety signal.Eur J Clin Pharmacol. 2021; 77: 1937-1938https://doi.org/10.1007/s00228-021-03197-8
- Cardiovascular Adverse Events Reported from COVID-19 Vaccines: a Study Based on WHO Database.Int J Gen Med. 2021; 14: 3909-3927
- Suspected Cardiovascular Side Effects of two Covid-19 Vaccines.Journal of Biology and Today's World. 2021; https://doi.org/10.31219/osf.io/gh9u2
- Blood pressure measurements after mRNA-SARS-CoV-2 tozinameran vaccination: a retrospective analysis in a university hospital in France.J Hum Hypertens. 2022; https://doi.org/10.1038/s41371-021-00634-0
- Factors influencing adverse events following immunization with AZD1222 in Vietnamese adults during first half of 2021.Vaccine. 2021; 39: 6485-6491https://doi.org/10.1016/j.vaccine.2021.09.060
- Blood pressure increase after Pfizer/BioNTech SARS-CoV-2 vaccine.Eur J Intern Med. 2021; 90: 111-113https://doi.org/10.1016/j.ejim.2021.06.013
- Significant Increase in Blood Pressure Following BNT162b2 mRNA COVID-19 Vaccination among Healthcare Workers: a Rare Event.Vaccines (Basel). 2022; 10https://doi.org/10.3390/vaccines10050745
- COVID-19 vaccines effect on blood pressure.Eur J Intern Med. 2022; https://doi.org/10.1016/j.ejim.2022.08.027
- Letter to the Editor: angiotensin-converting enzyme 2: an ally or a Trojan horse? Implications to SARS-CoV-2-related cardiovascular complications.Am J Physiol Heart Circ Physiol. 2020; 318: H1080-H10H3https://doi.org/10.1152/ajpheart.00215.2020
- Angiotensin-Converting Enzyme 2: sARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: celebrating the 20th Anniversary of the Discovery of ACE2.Circ Res. 2020; 126: 1456-1474https://doi.org/10.1161/CIRCRESAHA.120.317015
- Angiotensin Converting Enzyme 2: a Double-Edged Sword.Circulation. 2020; 142: 426-428https://doi.org/10.1161/circulationaha.120.047049
- SARS-CoV-2 infection and ACE2 inhibition.J Hypertens. 2021; 39: 1555-1558https://doi.org/10.1097/HJH.0000000000002859
- The pivotal link between ACE2 deficiency and SARS-CoV-2 infection.Eur J Intern Med. 2020; 76: 14-20https://doi.org/10.1016/j.ejim.2020.04.037
- COVID-19: aCE2centric Infective Disease?.Hypertension. 2020; 76: 294-299https://doi.org/10.1161/HYPERTENSIONAHA.120.15353
- ACE-inhibitors, angiotensin receptor blockers and severe acute respiratory syndrome caused by coronavirus.G Ital Cardiol (Rome). 2020; 21: 321-327https://doi.org/10.1714/3343.33127
- Angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and coronavirus.J Hypertens. 2020; 38: 1190-1191https://doi.org/10.1097/HJH.0000000000002469
- ACE2 Down-Regulation May Act as a Transient Molecular Disease Causing RAAS Dysregulation and Tissue Damage in the Microcirculatory Environment Among COVID-19 Patients.Am J Pathol. 2021; 191: 1154-1164https://doi.org/10.1016/j.ajpath.2021.04.010
- Intoxication With Endogenous Angiotensin II: a COVID-19 Hypothesis.Front Immunol. 2020; 11: 1472https://doi.org/10.3389/fimmu.2020.01472
- The pivotal link between ACE2 deficiency and SARS-CoV-2 infection: one year later.Eur J Intern Med. 2021; 93: 28-34https://doi.org/10.1016/j.ejim.2021.09.007
- Renin Angiotensin System Blockers and Risk of Mortality in Hypertensive Patients Hospitalized for COVID-19: an Italian Registry.J Cardiovasc Dev Dis. 2022; 9https://doi.org/10.3390/jcdd9010015
- Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target.Intensive Care Med. 2020; 46: 586-590https://doi.org/10.1007/s00134-020-05985-9
- Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases.Circ J. 2013; 77: 301-308https://doi.org/10.1253/circj.cj-12-1544
- Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase.J Biol Chem. 2002; 277: 14838-14843https://doi.org/10.1074/jbc.M200581200
- The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis.Front Immunol. 2015; 6: 387https://doi.org/10.3389/fimmu.2015.00387
- Ang II (Angiotensin II) Conversion to Angiotensin-(1-7) in the Circulation Is POP (Prolyloligopeptidase)-Dependent and ACE2 (Angiotensin-Converting Enzyme 2)-Independent.Hypertension. 2020; 75: 173-182https://doi.org/10.1161/HYPERTENSIONAHA.119.14071
- Van der Veken P, De Meester I. The C-terminal cleavage of angiotensin II and III is mediated by prolyl carboxypeptidase in human umbilical vein and aortic endothelial cells.Biochem Pharmacol. 2021; 192114738https://doi.org/10.1016/j.bcp.2021.114738
- Elevation of plasma angiotensin II level is a potential pathogenesis for the critically ill COVID-19 patients.Crit Care. 2020; 24: 290https://doi.org/10.1186/s13054-020-03015-0
- Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury.Sci China Life Sci. 2020; 63: 364-374https://doi.org/10.1007/s11427-020-1643-8
- Native-like SARS-CoV-2 spike glycoprotein expressed by ChAdOx1 nCoV-19/AZD1222 vaccine.bioRxiv. 2021; https://doi.org/10.1101/2021.01.15.426463
- Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an angiotensin II type I receptor-dependent mechanism.Hypertension. 2014; 64: 1368-1375https://doi.org/10.1161/HYPERTENSIONAHA.114.03743
- SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19.J Hematol Oncol. 2020; 13: 120https://doi.org/10.1186/s13045-020-00954-7
- Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic?.J Hypertens. 2020; 38: 781-782https://doi.org/10.1097/HJH.0000000000002450
- The role of angiotensin-converting enzyme 2 in coronaviruses/influenza viruses and cardiovascular disease.Cardiovasc Res. 2020; 116: 1932-1936https://doi.org/10.1093/cvr/cvaa093
- Telmisartan for treatment of Covid-19 patients: an open multicenter randomized clinical trial.EClinicalMedicine. 2021; 37100962https://doi.org/10.1016/j.eclinm.2021.100962
- Renin-angiotensin system inhibitors effect before and during hospitalization in COVID-19 outcomes: final analysis of the international HOPE COVID-19 (Health Outcome Predictive Evaluation for COVID-19) registry.Am Heart J. 2021; 237: 104-115https://doi.org/10.1016/j.ahj.2021.04.001
- Continuation versus discontinuation of renin-angiotensin system inhibitors in patients admitted to hospital with COVID-19: a prospective, randomised, open-label trial.Lancet Respir Med. 2021; 9: 275-284https://doi.org/10.1016/S2213-2600(20)30558-0
- A multi-center phase II randomized clinical trial of losartan on symptomatic outpatients with COVID-19.EClinicalMedicine. 2021; 37100957https://doi.org/10.1016/j.eclinm.2021.100957
- Efficacy of Losartan in Hospitalized Patients With COVID-19-Induced Lung Injury: a Randomized Clinical Trial.JAMA Netw Open. 2022; 5e222735https://doi.org/10.1001/jamanetworkopen.2022.2735
- Enzymatic processing of angiotensin peptides by human glomerular endothelial cells.Am J Physiol Renal Physiol. 2012; 302: F1583-F1594https://doi.org/10.1152/ajprenal.00087.2012
- Brain endo-oligopeptidase B: a post-proline cleaving enzyme that inactivates angiotensin I and II.Hypertension. 1982; 4: 178-184https://doi.org/10.1161/01.hyp.4.2.178
- A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11.Life Sci. 1993; 52: 1461-1480https://doi.org/10.1016/0024-3205(93)90108-f
- Purification and properties of prolylcarboxypeptidase (angiotensinase C) from human kidney.J Biol Chem. 1978; 253: 5927-5931
- Prolyl carboxypeptidase mRNA expression in the mouse brain.Brain Res. 2014; 1542: 85-92https://doi.org/10.1016/j.brainres.2013.10.031
- Associations Between Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blocker Use, Gastrointestinal Symptoms, and Mortality Among Patients With COVID-19.Gastroenterology. 2020; 159 (e1): 1170-1172https://doi.org/10.1053/j.gastro.2020.05.034
- Prolylcarboxypeptidase promotes angiogenesis and vascular repair.Blood. 2013; 122: 1522-1531https://doi.org/10.1182/blood-2012-10-460360
- Highly selective hydrolysis of kinins by recombinant prolylcarboxypeptidase.Biochem Biophys Res Commun. 2011; 405: 338-343https://doi.org/10.1016/j.bbrc.2010.12.036
- Prolylcarboxypeptidase deficiency is associated with increased blood pressure, glomerular lesions, and cardiac dysfunction independent of altered circulating and cardiac angiotensin II.J Mol Med (Berl). 2017; 95: 473-486https://doi.org/10.1007/s00109-017-1513-9
- Prolylcarboxypeptidase: a cardioprotective enzyme.Int J Biochem Cell Biol. 2009; 41: 477-481https://doi.org/10.1016/j.biocel.2008.02.022
- Hypertension and the bradykinin system.Curr Hypertens Rep. 2009; 11: 178-181https://doi.org/10.1007/s11906-009-0032-7
- Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension.Hypertension. 2010; 55: 90-98https://doi.org/10.1161/HYPERTENSIONAHA.109.138420
- Prolylcarboxypeptidase gene, chronic hypertension, and risk of preeclampsia.Am J Obstet Gynecol. 2006; 195: 162-171https://doi.org/10.1016/j.ajog.2006.01.079
- Murine prolylcarboxypeptidase depletion induces vascular dysfunction with hypertension and faster arterial thrombosis.Blood. 2011; 117: 3929-3937https://doi.org/10.1182/blood-2010-11-318527
- Gender Differences in Patients With COVID-19: focus on Severity and Mortality.Front Public Health. 2020; 8: 152https://doi.org/10.3389/fpubh.2020.00152
- Racial and Gender-Based Differences in COVID-19.Front Public Health. 2020; 8: 418https://doi.org/10.3389/fpubh.2020.00418
- Joint effect of heart failure and coronary artery disease on the risk of death during hospitalization for COVID-19.Eur J Intern Med. 2021; 89: 81-86https://doi.org/10.1016/j.ejim.2021.04.007
- Risk factors for severe and critically ill COVID-19 patients: a review.Allergy. 2021; 76: 428-455https://doi.org/10.1111/all.14657
- Comorbid diabetes and the risk of disease severity or death among 8807 COVID-19 patients in China: a meta-analysis.Diabetes Res. Clin. Pract. 2020; 166108346https://doi.org/10.1016/j.diabres.2020.108346
- Prolylcarboxypeptidase gene expression in the heart and kidney: effects of obesity and diabetes.Cardiovasc Hematol Agents Med Chem. 2015; 13: 113-123https://doi.org/10.2174/1871525713666150911112916
- Effect of aging on rat tissue peptidase activities.J Gerontol A Biol Sci Med Sci. 2003; 58: B792-B797https://doi.org/10.1093/gerona/58.9.b792
- Plasma prolylcarboxypeptidase (angiotensinase C) is increased in obesity and diabetes mellitus and related to cardiovascular dysfunction.Clin Chem. 2012; 58: 1110-1115https://doi.org/10.1373/clinchem.2011.179291
- Prolyl carboxypeptidase activity in the circulation and its correlation with body weight and adipose tissue in lean and obese subjects.PLoS ONE. 2018; 13e0197603https://doi.org/10.1371/journal.pone.0197603
- Pro-opiomelanocortin and its Processing Enzymes Associate with Plaque Stability in Human Atherosclerosis - Tampere Vascular Study.Sci Rep. 2018; 8: 15078https://doi.org/10.1038/s41598-018-33523-7
- The treatment of cardiovascular disease continuum: focus on prevention and RAS blockade.Curr Clin Pharmacol. 2010; 5: 89-95https://doi.org/10.2174/157488410791110742
- Proline-specific peptidase activities (DPP4, PRCP, FAP and PREP) in plasma of hospitalized COVID-19 patients.Clin Chim Acta. 2022; 531: 4-11https://doi.org/10.1016/j.cca.2022.03.005
- The Counter Regulatory Axis of the Lung Renin-Angiotensin System in Severe COVID-19: pathophysiology and Clinical Implications.Heart Lung Circ. 2021; 30: 786-794https://doi.org/10.1016/j.hlc.2020.11.008
- Acute Myocarditis Following COVID-19 mRNA Vaccination in Adults Aged 18 Years or Older.JAMA Intern Med. 2021; 181: 1668-1670https://doi.org/10.1001/jamainternmed.2021.5511
Wallace M., Oliver S. COVID-19 mRNA vaccines in adolescents and young adults: benefit-risk discussion. Corporate Authors(s): United States Advisory Committee on Immunization Practices (US ACIP) COVID-19 Vaccines Work Group Conference Author(s): US ACIP Meeting, Atlanta, GA, May 12, 2021 Published June 23, 2021 https://stackscdcgov/view/cdc/108331. 2021.
- Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination.N Engl J Med. 2021; 384: 2124-2130https://doi.org/10.1056/NEJMoa2104882
- Adjunct Immune Globulin for Vaccine-Induced Immune Thrombotic Thrombocytopenia.N Engl J Med. 2021; 385: 720-728https://doi.org/10.1056/NEJMoa2107051
- Clinical Features of Vaccine-Induced Immune Thrombocytopenia and Thrombosis.N Engl J Med. 2021; 385: 1680-1689https://doi.org/10.1056/NEJMoa2109908
https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-12-16/02-COVID-See-508.pdf (Accessed on September 15, 2022).
- Knowing the new Omicron BA.2.75 variant ('Centaurus'): a simulation study.Eur J Intern Med. 2022; https://doi.org/10.1016/j.ejim.2022.08.009
- Structural evolution of severe acute respiratory syndrome coronavirus 2: implications for adhesivity to angiotensin-converting enzyme 2 receptors and vaccines.Eur J Intern Med. 2022; https://doi.org/10.1016/j.ejim.2022.08.012
- Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney.Proc Natl Acad Sci U S A. 2006; 103: 17985-17990https://doi.org/10.1073/pnas.0605545103
- Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis.Trends Mol Med. 2022; 28: 542-554https://doi.org/10.1016/j.molmed.2022.04.007
Article info
Publication history
Publication stage
In Press Corrected ProofFootnotes
✰None of the authors of this study has financial or other reasons that could lead to a conflict of interest.