Advertisement

How low should blood pressure be in patients with chronic coronary and cerebrovascular diseases

Published:January 09, 2023DOI:https://doi.org/10.1016/j.ejim.2023.01.007

      Highlights

      • The challenge is to better define phenotypes of patients who are particularly vulnerable to over-aggressive lowering of blood pressure.
      • In high risk patients, decreasing BP levels below a certain threshold increase the risk for a subsequent CV event.
      • The optimal SBP target in patients with acute intracerebral hemorrhage remains debated.
      • Blood pressure is highly dynamic rather than a static entity in acute stroke, and should ideally be measured continuously during the acute phase of ischemic stroke.

      Abstract

      Over the last three decades, there are an increasing number of investigators and meta-analyses focusing on the fact that lowering blood pressure levels below a critical point is no longer beneficial and possibly even deleterious. In recent years, several trials and meta-analyses assessing intensive blood pressure (BP) lowering found that intensive treatment and lower blood pressure levels are associated with a reduction in CV events and mortality. However, a careful examination of the results shows that current data are not easily applicable to the general hypertensive population. In addition, recommendations of different guidelines since 2017 so far suggest different BP levels regarding the systolic and diastolic thresholds to be achieved and maintained, particularly in specific clinical situations such as patients with coronary artery disease and stroke. The challenge is to better define the limits of intervention and to define phenotypes of patients who are particularly vulnerable to over-aggressive lowering of blood pressure. This article reviews the evidence, controversies and current state of knowledge regarding intensive BP lowering and the lower thresholds of BP to be achieved in patients with chronic coronary or cerebrovascular diseases.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Internal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roth G.A.
        • Mensah G.A.
        • Johnson C.O.
        • Addolorato G.
        • Ammirati E.
        • Baddour L.M.
        • Barengo N.C.
        • Beaton A.Z.
        • Benjamin E.J.
        • Benziger C.P.
        • Bonny A.
        • Brauer M.
        • Brodmann M.
        • Cahill T.J.
        • Carapetis J.
        • Catapano A.L.
        • Chugh S.S.
        • Cooper L.T.
        • Coresh J.
        • Criqui M.
        • DeCleene N.
        • Eagle K.A.
        • Emmons-Bell S.
        • Feigin V.L.
        • Fernández-Solà J.
        • Fowkes G.
        • Gakidou E.
        • Grundy S.M.
        • He F.J.
        • Howard G.
        • Hu F.
        • Inker L.
        • Karthikeyan G.
        • Kassebaum N.
        • Koroshetz W.
        • Lavie C.
        • Lloyd-Jones D.
        • Lu H.S.
        • Mirijello A.
        • Temesgen A.M.
        • Mokdad A.
        • Moran A.E.
        • Muntner P.
        • Narula J.
        • Neal B.
        • Ntsekhe M.
        • Moraes de Oliveira G.
        • Otto C.
        • Owolabi M.
        • Pratt M.
        • Rajagopalan S.
        • Reitsma M.
        • Ribeiro A.L.P.
        • Rigotti N.
        • Rodgers A.
        • Sable C.
        • Shakil S.
        • Sliwa-Hahnle K.
        • Stark B.
        • Sundström J.
        • Timpel P.
        • Tleyjeh I.M.
        • Valgimigli M.
        • Vos T.
        • Whelton P.K.
        • Yacoub M.
        • Zuhlke L.
        • Murray C.
        • Fuster V.
        • GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group
        Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study.
        J Am Coll Cardiol. 2020; 76: 2982-3021
        • Williams B.
        • Mancia G.
        • Spiering W.
        • Agabiti Rosei E.
        • Azizi M.
        • Burnier M.
        • Clement D.L.
        • Coca A.
        • de Simone G.
        • Dominiczak A.
        • Kahan T.
        • Mahfoud F.
        • Redon J.
        • Ruilope L.
        • Zanchetti A.
        • Kerins M.
        • Kjeldsen S.E.
        • Kreutz R.
        • Laurent S.
        • Lip G.Y.H.
        • McManus R.
        • Narkiewicz K.
        • Ruschitzka F.
        • Schmieder R.E.
        • Shlyakhto E.
        • Tsioufis C.
        • Aboyans V.
        • Desormais I.
        • ESC Scientific Document Group
        2018 ESC/ESH guidelines for the management of arterial hypertension.
        Eur Heart J. 2018; 39: 3021-3104
        • Franklin S.S.
        • Khan S.A.
        • Wong N.D.
        • Larson M.G.
        • Levy D.
        Is pulse pressure useful in predicting risk for coronary heart Disease? The Framingham heart study.
        Circulation. 1999; 100: 354-360
        • Yusuf S.
        • Hawken S.
        • Ounpuu S.
        • Dans T.
        • Avezum A.
        • Lanas F.
        • McQueen M.
        • Budaj A.
        • Pais P.
        • Varigos J.
        • Lisheng L.
        • INTERHEART Study Investigators
        Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study.
        Lancet. 2004; 364: 937-952
        • O'Donnell M.J.
        • Xavier D.
        • Liu L.
        • Zhang H.
        • Chin S.L.
        • Rao-Melacini P.
        • et al.
        Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study.
        Lancet North Am Ed. 2010; 376: 112-123
        • Ettehad D.
        • Emdin C.A.
        • Kiran A.
        • Anderson S.G.
        • Callender T.
        • Emberson J.
        • Chalmers J.
        • Rodgers A.
        • Rahimi K.
        Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis.
        Lancet. 2016; 387: 957-967
        • Cooper-DeHoff R.M.
        • Handberg E.M.
        • Mancia G.
        • Zhou Q.
        • Champion A.
        • Legler U.F.
        • Pepine C.J.
        INVEST revisited: review of findings from the International Verapamil SR-Trandolapril Study.
        Expert Rev Cardiovasc Ther. 2009; 7: 1329-1340
        • Julius S.
        • Kjeldsen S.E.
        • Weber M.
        • Brunner H.R.
        • Ekman S.
        • Hansson L.
        • Hua T.
        • Laragh J.
        • McInnes G.T.
        • Mitchell L.
        • Plat F.
        • Schork A.
        • Smith B.
        • Zanchetti A.
        VALUE trial group. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial.
        Lancet. 2004; 363: 2022-2031
        • Bangalore S.
        • Messerli F.H.
        • Wun C.C.
        • Zuckerman A.L.
        • DeMicco D.
        • Kostis J.B.
        • LaRosa J.C.
        Treating to new targets steering committee and investigators. J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) Trial.
        Eur Heart J. 2010; 31: 2897-2908
        • Yusuf S.
        • Teo K.K.
        • Pogue J.
        • Dyal L.
        • Copland I.
        • Schumacher H.
        • Dagenais G.
        • Sleight P.
        • Anderson C.
        • ONTARGET Investigators
        Telmisartan, ramipril, or both in patients at high risk for vascular events.
        N Engl J Med. 2008; 358: 1547-1559
        • Wright Jr., J.T.
        • Williamson J.D.
        • Whelton P.K.
        • Snyder J.K.
        • Sink K.M.
        • Rocco M.V.
        • Reboussin D.M.
        • Rahman M.
        • Oparil S.
        • Lewis C.E.
        • Kimmel P.L.
        • Johnson K.C.
        • Goff Jr., D.C.
        • Fine L.J.
        • Cutler J.A.
        • Cushman W.C.
        • Cheung A.K.
        • Ambrosius W.T.
        • SPRINT Research Group
        A randomized trial of intensive versus standard blood-pressure control.
        N Engl J Med. 2015; 373: 2103-2116
        • Whelton P.K.
        • Carey R.M.
        • Aronow W.S.
        • Casey Jr, D.E.
        • Collins K.J.
        • Dennison Himmelfarb C.
        • DePalma S.M.
        • Gidding S.
        • Jamerson K.A.
        • Jones D.W.
        • MacLaughlin E.J.
        • Muntner P.
        • Ovbiagele B.
        • Smith Jr, S.C.
        • Spencer C.C.
        • Stafford R.S.
        • Taler S.J.
        • Thomas R.J.
        • Williams Sr, K.A.
        • Williamson J.D.
        • Wright Jr., J.T.
        2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the american college of cardiology/American Heart association task force on clinical practice guidelines.
        Hypertension. 2018; 71: e13-e115
        • Unger T.
        • Borghi C.
        • Charchar F.
        • Khan N.A.
        • Poulter N.R.
        • Prabhakaran D.
        • Ramirez A.
        • Schlaich M.
        • Stergiou G.S.
        • Tomaszewski M.
        • Wainford R.D.
        • Williams B.
        • Schutte A.E.
        2020 international society of hypertension global hypertension practice guidelines.
        J Hypertens. 2020; 38: 982-1004
        • Thomopoulos C.
        • Parati G.
        • Zanchetti A.
        Effects of blood pressure lowering on outcome incidence in hypertension: 2. Effects at different baseline and achieved blood pressure levels–overview and meta-analyses of randomized trials.
        J Hypertens. 2014; 32: 2296-2304
        • Morita K.
        • Mori H.
        • Tsujioka K.
        • Kimura A.
        • Ogasawara Y.
        • Goto M.
        • Hiramatsu O.
        • Kajiya F.
        • Feigl E.O.
        Alpha-adrenergic vasoconstriction reduces systolic retrograde coronary blood flow.
        Am J Physiol. 1997; 273: H2746-H2755
        • Tsika E.P.
        • Poulimenos L.E.
        • Boudoulas K.D.
        • Manolis A.J.
        The J-curve in arterial hypertension: fact or fallacy?.
        Cardiology. 2014; 129: 126-135
        • Boudoulas H.
        • Rittgers S.E.
        • Lewis R.P.
        • Leier C.V.
        • Weissler A.M.
        Changes in diastolic time with various pharmacologic agents: implication for myocardial perfusion.
        Circulation. 1979; 60: 164-169
        • Vidal-Petiot E.
        • Ford I.
        • Greenlaw N.
        • Ferrari R.
        • Fox K.M.
        • Tardif J.C.
        • Tendera M.
        • Tavazzi L.
        • Bhatt D.L.
        Steg PG; CLARIFY investigators. Cardiovascular event rates and mortality according to achieved systolic and diastolic blood pressure in patients with stable coronary artery disease: an international cohort study.
        Lancet. 2016; 388: 2142-2152
        • McEvoy J.W.
        • Chen Y.
        • Rawlings A.
        • Hoogeveen R.C.
        • Ballantyne C.M.
        • Blumenthal R.S.
        • Coresh J.
        • Selvin E.
        Diastolic blood pressure, subclinical myocardial damage, and cardiac events: implications for blood pressure control.
        J Am Coll Cardiol. 2016; 68: 1713-1722
        • Manolis A.J.
        • Kallistratos M.S.
        • LΕ P.
        • Ambrosio G.
        • Dechend R.
        • Lopez-Sendon J.
        • Rosano G.
        • Collins P.
        The ESC 2019 CCS guidelines: have we left our patients and scientific evidence behind?.
        Eur J Intern Med. 2020; 72: 5-8
        • Cushman W.C.
        • Evans G.W.
        • Byington R.P.
        • Jr G.D.C.
        • Jr G.R.H.
        • Cutler J.A.
        • Simons-Morton D.G.
        • Basile J.N.
        • Corson M.A.
        • Probstfield J.L.
        • Katz L.
        • Peterson K.A.
        • Friedewald W.T.
        • Buse J.B.
        • Bigger J.T.
        • Gerstein H.C.
        • Ismail-Beigi F.
        • ACCORD Study Group
        Effects of intensive blood-pressure control in type 2 diabetes mellitus.
        N Engl J Med. 2010; 362: 1575-1585https://doi.org/10.1056/NEJMoa1001286
        • Boutitie F.
        • Gueyffier F.
        • Pocock S.
        • Fagard R.
        • Boissel J.P.
        INDANA project steering committee. INdividual data analysis of antihypertensive intervention. J-shaped relationship between blood pressure and mortality in hypertensive patients: new insights from a meta-analysis of individual-patient data.
        Ann Intern Med. 2002; 136: 438-448https://doi.org/10.7326/0003-4819-136-6-200203190-00007
        • Reboldi G.
        • Angeli F.
        • Gentile G.
        • Verdecchia P.
        Benefits of more intensive versus less intensive blood pressure control. Updated trial sequential analysis.
        Eur J Intern Med. 2022; 101: 49-55https://doi.org/10.1016/j.ejim.2022.03.032
        • Manolis A.J.
        • Kallistratos M.S.
        • Poulimenos L.E.
        Angina and hypertension.
        Eur Heart J Suppl. 2019; 21: C15-C16
        • Kallistratos M.S.
        • Poulimenos L.E.
        • Manolis A.J.
        Beta blockers, calcium channel blockers, and long-acting nitrates for patients with stable angina and low blood pressure levels: should this recommendation be reconsidered?.
        Eur Heart J. 2020; 41: 479
        • Manolis A.J.
        • Kallistratos M.S.
        Recent published hypertension guidelines: a critical approach.
        Eur J Intern Med. 2019; 63: 1-2
        • Pantoni L.
        Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges.
        Lancet Neurol. 2010; 9: 689-701
        • Sierra C.
        • Camafort M.
        • Coca A.
        Structural and functional aspects of brain damage.
        (Mancia G, Grassi G, Dominiczak AF, Tsioufis K, Agabiti-Rosei E)Manual of hypertension of the European society of hypertension. CRC Press, Boca Raton, Florida, USA2020: 241-246
        • Lewington S.
        • Clarke R.
        • Qizilbash N.
        • Peto R.
        • Collins R.
        • Prospective Studies Collaboration
        Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies.
        Lancet. 2002; 360: 1903-1913
        • Rapsomaniki E.
        • Timmis A.
        • George J.
        • Pujades-Rodriguez M.
        • Shah A.D.
        • Denaxas S.
        • et al.
        Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1,25million people.
        Lancet. 2014; 383: 1899-1911
        • Singh G.M.
        • Danaei G.
        • Farzadfar F.
        • Stevens G.A.
        • Woodward M.
        • Wormser D.
        • et al.
        The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis.
        PLoS One. 2013; 8: e65174
        • Lawes C.M.
        • Rodgers A.
        • Bennett D.A.
        • Parag V.
        • Suh I.
        • Ueshima H.
        • et al.
        Blood pressure and cardiovascular disease in the Asia Pacific region.
        J Hypertens. 2003; 21: 707-716
        • Thomopoulos C.
        • Parati G.
        • Zanchetti A.
        Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, an metaregression analyses of randomized trials.
        J Hypertens. 2014; 32: 2285-2295
        • Collins R.
        • MacMahon S.
        Blood pressure, antihypertensive drug treatment and the risks of stroke and of coronary heart disease.
        Br Med Bull. 1994; 50: 272-298
        • Brunstrom M.
        • Carlberg B.
        Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels: a systematic review and meta-analysis.
        JAMA Intern Med. 2018; 178: 28-36
        • Mancia G.
        • Fagard R.
        • Narkiewicz K.
        • Redon J.
        • Zanchetti A.
        • Bohm M.
        • et al.
        2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC).
        J Hypertens. 2013; 31: 1281-1357
        • Bohm M.
        • Schumacher H.
        • Teo K.K.
        • Lonn E.M.
        • Mahfoud F.
        • Mann J.F.E.
        • Mancia G.
        • Redon J.
        • Schmieder R.E.
        • Sliwa K.
        • Weber M.A.
        • Williams B.
        • Yusuf S.
        Achieved blood pressure and cardiovascular outcomes in high-risk patients: results from ONTARGET and TRANSCEND trials.
        Lancet. 2017; 389: 2226-2237
        • Kjeldsen S.E.
        • Berge E.
        • Bangalore S.
        • Messerli F.H.
        • Mancia G.
        • Holzhauer B.
        • Hua T.A.
        • Zappe D.
        • Zanchetti A.
        • Weber M.A.
        • Julius S.
        No evidence for a J-shaped curve in treated hypertensive patients with increased cardiovascular risk: the VALUE trial.
        Blood Press. 2016; 25: 83-92
        • Mancia G.
        • Kjeldsen S.E.
        • Zappe D.H.
        • Holzhauer B.
        • Hua T.A.
        • Zanchetti A.
        • Julius S.
        • Weber M.A
        Cardiovascular outcomes at different on-treatment blood pressures in the hypertensive patients of the VALUE trial.
        Eur Heart J. 2016; 37: 955-964
        • Thomopoulos C.
        • Parati G.
        • Zanchetti A.
        Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels - updated overview and meta analyses of randomized trials.
        J Hypertens. 2016; 34: 613-622
        • Thomopoulos C.
        • Parati G.
        • Zanchetti A.
        Effects of blood-pressure-lowering treatment on outcome incidence in hypertension:10-Should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials.
        J Hypertens. 2017; 35: 922-944
        • Zhang W.
        • Zhang S.
        • Deng Y.
        • Wu S.
        • Ren J.
        • Sun G.
        • et al.
        Trial of intensive blood-pressure control in older patients with hypertension.
        N Eng J Med. 2021; 385: 1268-1279
        • Hemphill 3rd, J.C.
        • Greenberg S.M.
        • Anderson C.S.
        • Becker K.
        • Bendok B.R.
        • Cushman M.
        • et al.
        Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American heart association/American stroke association.
        Stroke. 2015; 46: 2032-2060
        • Anderson C.S.
        • Heeley E.
        • Huang Y.
        • Wang J.
        • Stapf C.
        • Delcourt C.
        • et al.
        Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage.
        N Engl J Med. 2013; 368: 2355-2365
        • Wang X.
        • Arima H.
        • Heeley E.
        • Delcourt C.
        • Huang Y.
        • Wang J.
        • et al.
        Magnitude of blood pressure reduction and clinical outcomes in acute intracerebral hemorrhage. intensive blood pressure reduction in acute cerebral hemorrhage trial study.
        Hypertension. 2015; 65: 1026-1032
        • Qureshi A.I.
        • Palesh Y.Y.
        • Barsan W.G.
        • Hanley D.F.
        • Hsu C.Y.
        • Martin R.L.
        • et al.
        Intensive blood-pressure lowering in patients with acute cerebral hemorrhage.
        N Engl J Med. 2016; 375: 1033-1043
        • Tsivgoulis G.
        • Katsanos A.H.
        • Butcher K.S.
        • Boviatsis E.
        • Triantafyllou N.
        • Rizos I.
        • et al.
        Intensive blood pressure reduction in acute intracerebral hemorrhage: a meta-analysis.
        Neurology. 2014; 83: 1523-1529
        • Moullaali T.J.
        • Wang X.
        • Sandset E.C.
        • Woodhouse L.J.
        • Law Z.K.
        • Arima H.
        • et al.
        Early lowering of blood pressure after acute intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data.
        J Neurol Neurosurg Psychiatry. 2022; 93: 6-13
        • Li Q.
        • Warren A.D.
        • Qureshi A.I.
        • Morotti A.
        • Falcone G.J.
        • Shet K.N.
        • et al.
        Ultra-early blood pressure reduction attenuates hematoma growth and improves outcome in intracerebral hemorrhage.
        Ann Neurol. 2020; 88: 388-395
        • Wang X.
        • Di Tanna G.L.
        • Moullaali T.J.
        • Martin R.H.
        • Shipes V.B.
        • Robinson T.G.
        • et al.
        J-shape relation of blood pressure reduction and outcome in acute intracerebral hemorrhage: a pooled analysis of INTERACT2 and ATACH-II individual participant data.
        Int J Stroke. 2022; https://doi.org/10.1177/17474930211064076
        • Morotti A.
        • Boulouis G.
        • Dowlatshahi D.
        • Li Q.
        • Shamy M.
        • Al-Shahi Salman R.
        • et al.
        Intracerebral haemorrhage expansion: definitions, predictors, and prevention.
        Lancet Neurol. 2022; https://doi.org/10.1016/S1474-4422(22)00338-6
        • Mustanoja S.
        • Putaala J.
        • Gordin D.
        • Tulkki L.
        • Aarnio K.
        • Pirinen J.
        • et al.
        Acute-phase blood pressure levels correlate with a high risk of recurrent strokes in young-onset ischemic stroke.
        Stroke. 2016; 47: 1593-1598
        • Rabinstein A.A.
        • Ackerson T.
        • Adeoye O.M.
        • Bambakidis N.C.
        • Becker K.
        • Biller J.
        • et al.
        2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.
        Stroke. 2018; 49: e46-e110
        • Harper G.
        • Castleden C.M.
        • Potter J.F.
        Factors affecting changes in blood pressure after acute stroke.
        Stroke. 1994; 25: 1726-1729
        • Vemmos K.N.
        • Tsivgoulis G.
        • Spengos K.
        • Zakopoulos N.
        • Synetos A.
        • Kotsis V.
        • et al.
        Association between 24-h blood pressure monitoring variables and brain oedema in patients with hyperacute stroke.
        J Hypertens. 2003; 21: 2167-2173
        • Vemmos K.N.
        • Tsivgoulis G.
        • Spengos K.
        • Synetos A.
        • Manios E.
        • Vassilopoulou S.
        • et al.
        Blood pressure course in acute ischaemic stroke in relation to stroke subtype.
        Blood Press Monit. 2004; 9: 107-114
        • Sare G.M.
        • Ali M.
        • Shuaib A.
        • Bath P.M.W.
        Relationship between hyperacute blood pressure and outcome after ischemic stroke: data from the VISTA collaboration.
        Stroke. 2009; 40: 2098-2103
        • Aslanyan S.
        • Fazekas F.
        • Weir C.J.
        • Horner S.
        • Lees K.R.
        Effect of blood pressure during the acute period of ischemic stroke on stroke outcome: a tertiary analysis of the GAIN International Trial.
        Stroke. 2003; 34: 2420-2425
        • Stead L.G.
        • Gilmore R.M.
        • Decker W.W.
        • Weaver A.L.
        • Brown R.D.
        Initial emergency department blood pressure as predictor of survival after acute ischemic stroke.
        Neurology. 2005; 65: 1179-1183
        • Christensen H.
        • Meden P.
        • Overgaard K.
        • Boysen G.
        The course of blood pressure in acute stroke is related to the severity of the neurological deficits.
        Acta Neurol Scand. 2002; 106: 142-147
        • Gasecki D.
        • Coca A.
        • Cunha P.
        • Hering D.
        • Manios E.
        • Lovic D.
        • et al.
        Challenges in the management of blood pressure in acute ischemic stroke: position of the ESH Working Group on Hypertension and the Brain.
        J Hypertens. 2018; 36: 1212-1221
        • Kakaletsis N.
        • Ntaios G.
        • Milionis H.
        • Haidich A.B.
        • Makaritsis K.
        • Savopoulos C.
        • et al.
        Prognostic value of 24-h ABPM in acute ischemic stroke for short-, medium-, and long-term outcome: a systematic review and meta-analysis.
        Int J Stroke. 2015; 10: 1000-1007
        • The ENOS Trial Investigators
        Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): a partial-factorial randomised controlled trial.
        Lancet. 2015; 385: 617-628
        • Sandset E.C.
        • Bath P.M.W.
        • Boysen G.
        • Jatuzis D.
        • Kõrv J.
        • Lüders S.
        • et al.
        The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial.
        Lancet. 2011; 377: 741-750
        • He J.
        • Zhang Y.
        • Xu T.
        • Zhao Q.
        • Wang D.
        • Chen C.S.
        • et al.
        Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke: the CATIS randomized clinical trial.
        JAMA. 2014; 311: 479-489
        • Minhas J.S.
        • Wang X.
        • Lindley R.I.
        • Delcourt C.
        • Song L.
        • Woodward M.
        • et al.
        Comparative effects of intensive-blood pressure versus standard-blood pressure-lowering treatment in patients with severe ischemic stroke inthe ENCHANTED trial.
        J Hypertens. 2021; 39: 280-285
        • Sandset E.C.
        • Murray G.D.
        • Bath P.M.
        • Kjeldsen S.E.
        • Berge E.
        Scandinavian Candesartan Acute Stroke Trial (SCAST) Study Group. Relation between change in blood pressure in acute stroke and risk of early adverse events and poor outcome.
        Stroke. 2012; 43: 2108-2114
        • Berge E.
        • Cohen G.
        • Lindley R.I.
        • Sandercock P.
        • Wardlaw J.M.
        • Sandset E.C.
        • et al.
        Effects of blood pressure and blood pressure-lowering treatment during the first 24 H among patients in the third international stroke trial of thrombolytic treatment for acute ischemic stroke.
        Stroke. 2015; 46: 3362-3369
        • Xu T.
        • Zhang Y.
        • Bu X.
        • Wang D.
        • Sun Y.
        • Chen C.S.
        • et al.
        Blood pressure reduction in acute ischemic stroke according to time to treatment: a subgroup analysis of the China antihypertensive trial in acute ischemic stroke trial.
        J Hypertens. 2017; 35: 1244-1251
        • PROGRESS Collaborative Group
        Randomised trial of a perindopril based blood-pressure-lowering regimen among 6105 individuals with previous stroke or transient ischaemic attack.
        Lancet. 2001; 358: 1033-1041
        • PROGRESS Collaborative Group
        Effects of a perindopril-based blood pressure-lowering regimen on disability and dependency in 6105 patients with cerebrovascular disease: a randomized controlled trial.
        Stroke. 2003; 34: 2333-2338
        • Katsanos A.H.
        • Filippatou A.
        • Manios E.
        • Spridon D.
        • Parissis J.
        • Frogoudaki A.
        • et al.
        Blood pressure reduction and secondary stroke prevention: a systematic review and meta-regression analysis of randomized clinical trials.
        Hypertension. 2017; 69: 171-179
      1. 2021 Guideline for the prevention of stroke in patients with stroke and transient ischemic attack. A Guideline from the American Heart Association/American Stroke Association.
        Stroke. 2021; 52: e364-e467
        • Kim J.
        • Gall S.L.
        • Nelson M.R.
        • Sharman J.E.
        • Thrift A.G.
        Lower systolic blood pressure is associated with poorer survival in long-term survivors of stroke.
        J Hipertens. 2014; 32: 904-911
        • Benavente O.R.
        • Coffey C.S.
        • et al.
        Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial.
        Lancet. 2013; 382: 507-515
        • White C.L.
        • Szychowski J.M.
        • Pergola P.E.
        • Field T.S.
        • Talbert R.
        • Lau H.
        • et al.
        Can blood pressure be lowered safely in older adults with lacunar stroke? The secondary prevention of small subcortical strokes study experience.
        J Am Geriatr Soc. 2015; 63: 722-729
        • Odden M.C.
        • McClure L.A.
        • Sawaya B.P.
        • White C.L.
        • Peralta C.A.
        • Field T.S.
        • et al.
        Achieved blood pressure and outcomes in the secondary prevention of small subcortical strokes trial.
        Hypertension. 2016; 67: 63-69